Multimodal biometric authentication algorithm using ear and finger knuckle images
Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fus...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | |
container_start_page | 176 |
container_title | |
container_volume | |
creator | Tharwat, A. Ibrahim, A. F. Ali, H. A. |
description | Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods. |
doi_str_mv | 10.1109/ICCES.2012.6408507 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6408507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6408507</ieee_id><sourcerecordid>6408507</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4293935cacf2e0eb03977bd90103e44a546278f261a0612b1ab362e500f18a803</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhUdEUGpeQDfzAql3fjKTWUqoWqiIqOtyk9ykY_Mjk8nCtzfQLlwdvsX5DhzG7gSshQD3sC2KzcdagpBroyHPwF6wxNlcaGOVdJmDy_9swFyzZJq-AWDpGyntDXt_nbvo-7HGjpd-7CkGX3Gc44GG6CuMfhw4du0YfDz0fJ780HLCwHGoebMABX4c5urYEfc9tjTdsqsGu4mSc67Y19Pms3hJd2_P2-Jxl3phs5hq6ZRTWYVVIwmoBOWsLWsHAhRpjZk20uaNNALBCFkKLJWRlAE0Iscc1Irdn7yeiPY_YVkPv_vzEeoPJ51RPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multimodal biometric authentication algorithm using ear and finger knuckle images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tharwat, A. ; Ibrahim, A. F. ; Ali, H. A.</creator><creatorcontrib>Tharwat, A. ; Ibrahim, A. F. ; Ali, H. A.</creatorcontrib><description>Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.</description><identifier>ISBN: 9781467329606</identifier><identifier>ISBN: 1467329606</identifier><identifier>EISBN: 9781467329590</identifier><identifier>EISBN: 1467329592</identifier><identifier>EISBN: 1467329614</identifier><identifier>EISBN: 9781467329613</identifier><identifier>DOI: 10.1109/ICCES.2012.6408507</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Authentication ; authentication algorithms ; Biometric data ; Ear ; ear and finger knuckle images ; Face ; Feature extraction ; Fingers ; image fusion ; Sensors</subject><ispartof>2012 Seventh International Conference on Computer Engineering & Systems (ICCES), 2012, p.176-179</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6408507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6408507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tharwat, A.</creatorcontrib><creatorcontrib>Ibrahim, A. F.</creatorcontrib><creatorcontrib>Ali, H. A.</creatorcontrib><title>Multimodal biometric authentication algorithm using ear and finger knuckle images</title><title>2012 Seventh International Conference on Computer Engineering & Systems (ICCES)</title><addtitle>ICCES</addtitle><description>Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.</description><subject>Abstracts</subject><subject>Authentication</subject><subject>authentication algorithms</subject><subject>Biometric data</subject><subject>Ear</subject><subject>ear and finger knuckle images</subject><subject>Face</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>image fusion</subject><subject>Sensors</subject><isbn>9781467329606</isbn><isbn>1467329606</isbn><isbn>9781467329590</isbn><isbn>1467329592</isbn><isbn>1467329614</isbn><isbn>9781467329613</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhUdEUGpeQDfzAql3fjKTWUqoWqiIqOtyk9ykY_Mjk8nCtzfQLlwdvsX5DhzG7gSshQD3sC2KzcdagpBroyHPwF6wxNlcaGOVdJmDy_9swFyzZJq-AWDpGyntDXt_nbvo-7HGjpd-7CkGX3Gc44GG6CuMfhw4du0YfDz0fJ780HLCwHGoebMABX4c5urYEfc9tjTdsqsGu4mSc67Y19Pms3hJd2_P2-Jxl3phs5hq6ZRTWYVVIwmoBOWsLWsHAhRpjZk20uaNNALBCFkKLJWRlAE0Iscc1Irdn7yeiPY_YVkPv_vzEeoPJ51RPw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Tharwat, A.</creator><creator>Ibrahim, A. F.</creator><creator>Ali, H. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Multimodal biometric authentication algorithm using ear and finger knuckle images</title><author>Tharwat, A. ; Ibrahim, A. F. ; Ali, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4293935cacf2e0eb03977bd90103e44a546278f261a0612b1ab362e500f18a803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abstracts</topic><topic>Authentication</topic><topic>authentication algorithms</topic><topic>Biometric data</topic><topic>Ear</topic><topic>ear and finger knuckle images</topic><topic>Face</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>image fusion</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tharwat, A.</creatorcontrib><creatorcontrib>Ibrahim, A. F.</creatorcontrib><creatorcontrib>Ali, H. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tharwat, A.</au><au>Ibrahim, A. F.</au><au>Ali, H. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multimodal biometric authentication algorithm using ear and finger knuckle images</atitle><btitle>2012 Seventh International Conference on Computer Engineering & Systems (ICCES)</btitle><stitle>ICCES</stitle><date>2012-11</date><risdate>2012</risdate><spage>176</spage><epage>179</epage><pages>176-179</pages><isbn>9781467329606</isbn><isbn>1467329606</isbn><eisbn>9781467329590</eisbn><eisbn>1467329592</eisbn><eisbn>1467329614</eisbn><eisbn>9781467329613</eisbn><abstract>Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCES.2012.6408507</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467329606 |
ispartof | 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), 2012, p.176-179 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6408507 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Abstracts Authentication authentication algorithms Biometric data Ear ear and finger knuckle images Face Feature extraction Fingers image fusion Sensors |
title | Multimodal biometric authentication algorithm using ear and finger knuckle images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multimodal%20biometric%20authentication%20algorithm%20using%20ear%20and%20finger%20knuckle%20images&rft.btitle=2012%20Seventh%20International%20Conference%20on%20Computer%20Engineering%20&%20Systems%20(ICCES)&rft.au=Tharwat,%20A.&rft.date=2012-11&rft.spage=176&rft.epage=179&rft.pages=176-179&rft.isbn=9781467329606&rft.isbn_list=1467329606&rft_id=info:doi/10.1109/ICCES.2012.6408507&rft_dat=%3Cieee_6IE%3E6408507%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467329590&rft.eisbn_list=1467329592&rft.eisbn_list=1467329614&rft.eisbn_list=9781467329613&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6408507&rfr_iscdi=true |