Multimodal biometric authentication algorithm using ear and finger knuckle images

Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tharwat, A., Ibrahim, A. F., Ali, H. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue
container_start_page 176
container_title
container_volume
creator Tharwat, A.
Ibrahim, A. F.
Ali, H. A.
description Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.
doi_str_mv 10.1109/ICCES.2012.6408507
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6408507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6408507</ieee_id><sourcerecordid>6408507</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4293935cacf2e0eb03977bd90103e44a546278f261a0612b1ab362e500f18a803</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhUdEUGpeQDfzAql3fjKTWUqoWqiIqOtyk9ykY_Mjk8nCtzfQLlwdvsX5DhzG7gSshQD3sC2KzcdagpBroyHPwF6wxNlcaGOVdJmDy_9swFyzZJq-AWDpGyntDXt_nbvo-7HGjpd-7CkGX3Gc44GG6CuMfhw4du0YfDz0fJ780HLCwHGoebMABX4c5urYEfc9tjTdsqsGu4mSc67Y19Pms3hJd2_P2-Jxl3phs5hq6ZRTWYVVIwmoBOWsLWsHAhRpjZk20uaNNALBCFkKLJWRlAE0Iscc1Irdn7yeiPY_YVkPv_vzEeoPJ51RPw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multimodal biometric authentication algorithm using ear and finger knuckle images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tharwat, A. ; Ibrahim, A. F. ; Ali, H. A.</creator><creatorcontrib>Tharwat, A. ; Ibrahim, A. F. ; Ali, H. A.</creatorcontrib><description>Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.</description><identifier>ISBN: 9781467329606</identifier><identifier>ISBN: 1467329606</identifier><identifier>EISBN: 9781467329590</identifier><identifier>EISBN: 1467329592</identifier><identifier>EISBN: 1467329614</identifier><identifier>EISBN: 9781467329613</identifier><identifier>DOI: 10.1109/ICCES.2012.6408507</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Authentication ; authentication algorithms ; Biometric data ; Ear ; ear and finger knuckle images ; Face ; Feature extraction ; Fingers ; image fusion ; Sensors</subject><ispartof>2012 Seventh International Conference on Computer Engineering &amp; Systems (ICCES), 2012, p.176-179</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6408507$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6408507$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tharwat, A.</creatorcontrib><creatorcontrib>Ibrahim, A. F.</creatorcontrib><creatorcontrib>Ali, H. A.</creatorcontrib><title>Multimodal biometric authentication algorithm using ear and finger knuckle images</title><title>2012 Seventh International Conference on Computer Engineering &amp; Systems (ICCES)</title><addtitle>ICCES</addtitle><description>Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.</description><subject>Abstracts</subject><subject>Authentication</subject><subject>authentication algorithms</subject><subject>Biometric data</subject><subject>Ear</subject><subject>ear and finger knuckle images</subject><subject>Face</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>image fusion</subject><subject>Sensors</subject><isbn>9781467329606</isbn><isbn>1467329606</isbn><isbn>9781467329590</isbn><isbn>1467329592</isbn><isbn>1467329614</isbn><isbn>9781467329613</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhUdEUGpeQDfzAql3fjKTWUqoWqiIqOtyk9ykY_Mjk8nCtzfQLlwdvsX5DhzG7gSshQD3sC2KzcdagpBroyHPwF6wxNlcaGOVdJmDy_9swFyzZJq-AWDpGyntDXt_nbvo-7HGjpd-7CkGX3Gc44GG6CuMfhw4du0YfDz0fJ780HLCwHGoebMABX4c5urYEfc9tjTdsqsGu4mSc67Y19Pms3hJd2_P2-Jxl3phs5hq6ZRTWYVVIwmoBOWsLWsHAhRpjZk20uaNNALBCFkKLJWRlAE0Iscc1Irdn7yeiPY_YVkPv_vzEeoPJ51RPw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Tharwat, A.</creator><creator>Ibrahim, A. F.</creator><creator>Ali, H. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Multimodal biometric authentication algorithm using ear and finger knuckle images</title><author>Tharwat, A. ; Ibrahim, A. F. ; Ali, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4293935cacf2e0eb03977bd90103e44a546278f261a0612b1ab362e500f18a803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abstracts</topic><topic>Authentication</topic><topic>authentication algorithms</topic><topic>Biometric data</topic><topic>Ear</topic><topic>ear and finger knuckle images</topic><topic>Face</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>image fusion</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tharwat, A.</creatorcontrib><creatorcontrib>Ibrahim, A. F.</creatorcontrib><creatorcontrib>Ali, H. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tharwat, A.</au><au>Ibrahim, A. F.</au><au>Ali, H. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multimodal biometric authentication algorithm using ear and finger knuckle images</atitle><btitle>2012 Seventh International Conference on Computer Engineering &amp; Systems (ICCES)</btitle><stitle>ICCES</stitle><date>2012-11</date><risdate>2012</risdate><spage>176</spage><epage>179</epage><pages>176-179</pages><isbn>9781467329606</isbn><isbn>1467329606</isbn><eisbn>9781467329590</eisbn><eisbn>1467329592</eisbn><eisbn>1467329614</eisbn><eisbn>9781467329613</eisbn><abstract>Biometrics that use physiological traits such as face, iris, fingerprints, ear, and finger knuckle (FK) for authentication face the problems of noisy sensors data, non-universality, and unacceptable error rates. Multimodal biometric methods use different fusion techniques to avoid such problems. Fusion methods have been proposed in different levels such as feature and classification level. This paper proposes two multimodal biometric authentication methods using ear and FK images. We propose a method based on fusion of images of ear and FK before the feature level, thus there is no information lost. We also propose a multi-level fusion method at image and classification levels. The features are extracted from the fused images using different classifiers and then combine the outputs of the classifiers in the abstract, rank, and score levels of fusion. Experimental results show that the proposed authentication methods increase the recognition rate compared to the state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCES.2012.6408507</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467329606
ispartof 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), 2012, p.176-179
issn
language eng
recordid cdi_ieee_primary_6408507
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Abstracts
Authentication
authentication algorithms
Biometric data
Ear
ear and finger knuckle images
Face
Feature extraction
Fingers
image fusion
Sensors
title Multimodal biometric authentication algorithm using ear and finger knuckle images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multimodal%20biometric%20authentication%20algorithm%20using%20ear%20and%20finger%20knuckle%20images&rft.btitle=2012%20Seventh%20International%20Conference%20on%20Computer%20Engineering%20&%20Systems%20(ICCES)&rft.au=Tharwat,%20A.&rft.date=2012-11&rft.spage=176&rft.epage=179&rft.pages=176-179&rft.isbn=9781467329606&rft.isbn_list=1467329606&rft_id=info:doi/10.1109/ICCES.2012.6408507&rft_dat=%3Cieee_6IE%3E6408507%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467329590&rft.eisbn_list=1467329592&rft.eisbn_list=1467329614&rft.eisbn_list=9781467329613&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6408507&rfr_iscdi=true