Anomaly detection using Support Vector Machine classification with k-Medoids clustering
Anomaly based Intrusion Detection System, in the recent years, has become more dependent on learning methods - specially on classifications schemes. To make the classification more accurate and effective, hybrid approaches of combining with clustering techniques are often introduced. In this paper,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chitrakar, R. Huang Chuanhe |
description | Anomaly based Intrusion Detection System, in the recent years, has become more dependent on learning methods - specially on classifications schemes. To make the classification more accurate and effective, hybrid approaches of combining with clustering techniques are often introduced. In this paper, a better combination is proposed to address problems of the previously proposed hybrid approach of combining k-Means/k-Medoids clustering technique with Naïve Bayes classification. In this new approach, the need of large samples by the previous approach is reduced by using Support Vector Machine while maintaining the high quality clustering of k-Medoids. Simulations have been carried out by using Kyoto2006+ data sets in order to evaluate performance, accuracy, detection rate and false positive rate of the classification scheme. Experiments and analyses show that the new approach is better in increasing the detection rate as well as in decreasing the false positive rate. |
doi_str_mv | 10.1109/AHICI.2012.6408446 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6408446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6408446</ieee_id><sourcerecordid>6408446</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-8b02da1db14243de7aa7bdb87ffca87ecd9309124601006420d7fff905a51a703</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRc1Loir9Adj4B1JmbDe2l1EEbaRWLHgtKyd2qKFNojgR6t9jQResRppz75FmCLlFmCOCvs9WRV7MGSCbpwKUEOkZmWmpUKSSs4XS-pxMUAtMADle_Gca2WVkoHQiFeA1mYXwCQDRm3KmJ-Q9a9qD2R-pdYOrBt82dAy--aDPY9e1_UDf4rbt6cZUO984Wu1NCL72lfnNfvthR7-SjbOttyHSMQyuj_0bclWbfXCz05yS18eHl3yVrJ-WRZ6tE89QD4kqgVmDtkTBBLdOGiNLWypZ15VR0lVWc4hHiBQQIBUMbES1hoVZoJHAp-Tuz-udc9uu9wfTH7enN_EfMblYJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Anomaly detection using Support Vector Machine classification with k-Medoids clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chitrakar, R. ; Huang Chuanhe</creator><creatorcontrib>Chitrakar, R. ; Huang Chuanhe</creatorcontrib><description>Anomaly based Intrusion Detection System, in the recent years, has become more dependent on learning methods - specially on classifications schemes. To make the classification more accurate and effective, hybrid approaches of combining with clustering techniques are often introduced. In this paper, a better combination is proposed to address problems of the previously proposed hybrid approach of combining k-Means/k-Medoids clustering technique with Naïve Bayes classification. In this new approach, the need of large samples by the previous approach is reduced by using Support Vector Machine while maintaining the high quality clustering of k-Medoids. Simulations have been carried out by using Kyoto2006+ data sets in order to evaluate performance, accuracy, detection rate and false positive rate of the classification scheme. Experiments and analyses show that the new approach is better in increasing the detection rate as well as in decreasing the false positive rate.</description><identifier>ISSN: 1089-7801</identifier><identifier>ISBN: 9781467325912</identifier><identifier>ISBN: 1467325910</identifier><identifier>EISSN: 1941-0131</identifier><identifier>EISBN: 9781467325899</identifier><identifier>EISBN: 1467325899</identifier><identifier>EISBN: 9781467325905</identifier><identifier>EISBN: 1467325902</identifier><identifier>DOI: 10.1109/AHICI.2012.6408446</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Anomaly Detection ; Classification algorithms ; Clustering algorithms ; Data mining ; Intrusion detection ; k-medoids Clustering ; Naïve Bayes Classification ; Niobium ; Support Vector Machine ; Support vector machines</subject><ispartof>2012 Third Asian Himalayas International Conference on Internet, 2012, p.1-5</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6408446$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,798,2062,27934,54767,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6408446$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chitrakar, R.</creatorcontrib><creatorcontrib>Huang Chuanhe</creatorcontrib><title>Anomaly detection using Support Vector Machine classification with k-Medoids clustering</title><title>2012 Third Asian Himalayas International Conference on Internet</title><addtitle>AHICI</addtitle><description>Anomaly based Intrusion Detection System, in the recent years, has become more dependent on learning methods - specially on classifications schemes. To make the classification more accurate and effective, hybrid approaches of combining with clustering techniques are often introduced. In this paper, a better combination is proposed to address problems of the previously proposed hybrid approach of combining k-Means/k-Medoids clustering technique with Naïve Bayes classification. In this new approach, the need of large samples by the previous approach is reduced by using Support Vector Machine while maintaining the high quality clustering of k-Medoids. Simulations have been carried out by using Kyoto2006+ data sets in order to evaluate performance, accuracy, detection rate and false positive rate of the classification scheme. Experiments and analyses show that the new approach is better in increasing the detection rate as well as in decreasing the false positive rate.</description><subject>Accuracy</subject><subject>Anomaly Detection</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Intrusion detection</subject><subject>k-medoids Clustering</subject><subject>Naïve Bayes Classification</subject><subject>Niobium</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>1089-7801</issn><issn>1941-0131</issn><isbn>9781467325912</isbn><isbn>1467325910</isbn><isbn>9781467325899</isbn><isbn>1467325899</isbn><isbn>9781467325905</isbn><isbn>1467325902</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRc1Loir9Adj4B1JmbDe2l1EEbaRWLHgtKyd2qKFNojgR6t9jQResRppz75FmCLlFmCOCvs9WRV7MGSCbpwKUEOkZmWmpUKSSs4XS-pxMUAtMADle_Gca2WVkoHQiFeA1mYXwCQDRm3KmJ-Q9a9qD2R-pdYOrBt82dAy--aDPY9e1_UDf4rbt6cZUO984Wu1NCL72lfnNfvthR7-SjbOttyHSMQyuj_0bclWbfXCz05yS18eHl3yVrJ-WRZ6tE89QD4kqgVmDtkTBBLdOGiNLWypZ15VR0lVWc4hHiBQQIBUMbES1hoVZoJHAp-Tuz-udc9uu9wfTH7enN_EfMblYJw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Chitrakar, R.</creator><creator>Huang Chuanhe</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Anomaly detection using Support Vector Machine classification with k-Medoids clustering</title><author>Chitrakar, R. ; Huang Chuanhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-8b02da1db14243de7aa7bdb87ffca87ecd9309124601006420d7fff905a51a703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Anomaly Detection</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Intrusion detection</topic><topic>k-medoids Clustering</topic><topic>Naïve Bayes Classification</topic><topic>Niobium</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chitrakar, R.</creatorcontrib><creatorcontrib>Huang Chuanhe</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chitrakar, R.</au><au>Huang Chuanhe</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Anomaly detection using Support Vector Machine classification with k-Medoids clustering</atitle><btitle>2012 Third Asian Himalayas International Conference on Internet</btitle><stitle>AHICI</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1089-7801</issn><eissn>1941-0131</eissn><isbn>9781467325912</isbn><isbn>1467325910</isbn><eisbn>9781467325899</eisbn><eisbn>1467325899</eisbn><eisbn>9781467325905</eisbn><eisbn>1467325902</eisbn><abstract>Anomaly based Intrusion Detection System, in the recent years, has become more dependent on learning methods - specially on classifications schemes. To make the classification more accurate and effective, hybrid approaches of combining with clustering techniques are often introduced. In this paper, a better combination is proposed to address problems of the previously proposed hybrid approach of combining k-Means/k-Medoids clustering technique with Naïve Bayes classification. In this new approach, the need of large samples by the previous approach is reduced by using Support Vector Machine while maintaining the high quality clustering of k-Medoids. Simulations have been carried out by using Kyoto2006+ data sets in order to evaluate performance, accuracy, detection rate and false positive rate of the classification scheme. Experiments and analyses show that the new approach is better in increasing the detection rate as well as in decreasing the false positive rate.</abstract><pub>IEEE</pub><doi>10.1109/AHICI.2012.6408446</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7801 |
ispartof | 2012 Third Asian Himalayas International Conference on Internet, 2012, p.1-5 |
issn | 1089-7801 1941-0131 |
language | eng |
recordid | cdi_ieee_primary_6408446 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Anomaly Detection Classification algorithms Clustering algorithms Data mining Intrusion detection k-medoids Clustering Naïve Bayes Classification Niobium Support Vector Machine Support vector machines |
title | Anomaly detection using Support Vector Machine classification with k-Medoids clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T18%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Anomaly%20detection%20using%20Support%20Vector%20Machine%20classification%20with%20k-Medoids%20clustering&rft.btitle=2012%20Third%20Asian%20Himalayas%20International%20Conference%20on%20Internet&rft.au=Chitrakar,%20R.&rft.date=2012-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1089-7801&rft.eissn=1941-0131&rft.isbn=9781467325912&rft.isbn_list=1467325910&rft_id=info:doi/10.1109/AHICI.2012.6408446&rft_dat=%3Cieee_6IE%3E6408446%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325899&rft.eisbn_list=1467325899&rft.eisbn_list=9781467325905&rft.eisbn_list=1467325902&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6408446&rfr_iscdi=true |