Improved nonlocal means denoising for images with tone gradients

Image denoising is an essential feature of modern Image Signal Processor (ISP). As a part of mobile system, acceptability of denoising methods is determined by electrical power consumption, silicon footprint and architecture of ISP. Non-local means (NLM) denoising algorithm proposed by Buades et al....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Getman, A., Se-Hwan Yun, Tae-Chan Kim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue
container_start_page 328
container_title
container_volume
creator Getman, A.
Se-Hwan Yun
Tae-Chan Kim
description Image denoising is an essential feature of modern Image Signal Processor (ISP). As a part of mobile system, acceptability of denoising methods is determined by electrical power consumption, silicon footprint and architecture of ISP. Non-local means (NLM) denoising algorithm proposed by Buades et al. [1] has very convenient architecture to be implemented either as SoC or CPU/GPU based ISP. Unfortunately, it is prone to produce "staircasing effect" [2] on images having nonzero tone gradients. In this paper we propose a simple yet efficient extension of the original NLM algorithm that addresses the staircasing problem. Unlike existing solutions such as [3] or [5] we intentionally avoid kernel regression methods or multiresolution decompositions and focus on improvement of pattern matching process. As a result, our algorithm does not use costly regression computations and provides considerable subjective and objective performance gain (improvement in PSNR ~0.3dB). Also, the ideas explained here can be used in other image processing methods where block matching plays key role.
doi_str_mv 10.1109/ISOCC.2012.6407107
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6407107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6407107</ieee_id><sourcerecordid>6407107</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-563cd6db6b6bc163de9dc5eff8569c74f3d18caf8d20cd5e2f23752022d640f3</originalsourceid><addsrcrecordid>eNotj81KxDAcxCOyoK59Ab3kBVrz0STNTSm6Fhb24N6XbPJPjbTJ0hTFt7dgmcOPOcwwg9ADJRWlRD91H4e2rRihrJI1UZSoK1Ro1dBaKs60Jvwa3a2m0fUNKnL-IoQsYbXgFj1342VK3-BwTHFI1gx4BBMzdhBTyCH22KcJh9H0kPFPmD_xnCLgfjIuQJzzPdp4M2QoVm7R8e312L6X-8Oua1_2ZaBKzKWQ3DrpznKRpZI70M4K8L4RUltVe-5oY41vHCPWCWCecSUYYcwtxzzfosf_2gAAp8u0DJp-T-tn_gcvAEtH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved nonlocal means denoising for images with tone gradients</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Getman, A. ; Se-Hwan Yun ; Tae-Chan Kim</creator><creatorcontrib>Getman, A. ; Se-Hwan Yun ; Tae-Chan Kim</creatorcontrib><description>Image denoising is an essential feature of modern Image Signal Processor (ISP). As a part of mobile system, acceptability of denoising methods is determined by electrical power consumption, silicon footprint and architecture of ISP. Non-local means (NLM) denoising algorithm proposed by Buades et al. [1] has very convenient architecture to be implemented either as SoC or CPU/GPU based ISP. Unfortunately, it is prone to produce "staircasing effect" [2] on images having nonzero tone gradients. In this paper we propose a simple yet efficient extension of the original NLM algorithm that addresses the staircasing problem. Unlike existing solutions such as [3] or [5] we intentionally avoid kernel regression methods or multiresolution decompositions and focus on improvement of pattern matching process. As a result, our algorithm does not use costly regression computations and provides considerable subjective and objective performance gain (improvement in PSNR ~0.3dB). Also, the ideas explained here can be used in other image processing methods where block matching plays key role.</description><identifier>ISBN: 1467329894</identifier><identifier>ISBN: 9781467329897</identifier><identifier>EISBN: 9781467329903</identifier><identifier>EISBN: 1467329886</identifier><identifier>EISBN: 1467329908</identifier><identifier>EISBN: 9781467329880</identifier><identifier>DOI: 10.1109/ISOCC.2012.6407107</identifier><language>eng</language><publisher>IEEE</publisher><subject>block matching ; computational efficiency ; denoising ; nonlocal filtering ; tone gradient</subject><ispartof>2012 International SoC Design Conference (ISOCC), 2012, p.328-331</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6407107$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6407107$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Getman, A.</creatorcontrib><creatorcontrib>Se-Hwan Yun</creatorcontrib><creatorcontrib>Tae-Chan Kim</creatorcontrib><title>Improved nonlocal means denoising for images with tone gradients</title><title>2012 International SoC Design Conference (ISOCC)</title><addtitle>ISOCC</addtitle><description>Image denoising is an essential feature of modern Image Signal Processor (ISP). As a part of mobile system, acceptability of denoising methods is determined by electrical power consumption, silicon footprint and architecture of ISP. Non-local means (NLM) denoising algorithm proposed by Buades et al. [1] has very convenient architecture to be implemented either as SoC or CPU/GPU based ISP. Unfortunately, it is prone to produce "staircasing effect" [2] on images having nonzero tone gradients. In this paper we propose a simple yet efficient extension of the original NLM algorithm that addresses the staircasing problem. Unlike existing solutions such as [3] or [5] we intentionally avoid kernel regression methods or multiresolution decompositions and focus on improvement of pattern matching process. As a result, our algorithm does not use costly regression computations and provides considerable subjective and objective performance gain (improvement in PSNR ~0.3dB). Also, the ideas explained here can be used in other image processing methods where block matching plays key role.</description><subject>block matching</subject><subject>computational efficiency</subject><subject>denoising</subject><subject>nonlocal filtering</subject><subject>tone gradient</subject><isbn>1467329894</isbn><isbn>9781467329897</isbn><isbn>9781467329903</isbn><isbn>1467329886</isbn><isbn>1467329908</isbn><isbn>9781467329880</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAcxCOyoK59Ab3kBVrz0STNTSm6Fhb24N6XbPJPjbTJ0hTFt7dgmcOPOcwwg9ADJRWlRD91H4e2rRihrJI1UZSoK1Ro1dBaKs60Jvwa3a2m0fUNKnL-IoQsYbXgFj1342VK3-BwTHFI1gx4BBMzdhBTyCH22KcJh9H0kPFPmD_xnCLgfjIuQJzzPdp4M2QoVm7R8e312L6X-8Oua1_2ZaBKzKWQ3DrpznKRpZI70M4K8L4RUltVe-5oY41vHCPWCWCecSUYYcwtxzzfosf_2gAAp8u0DJp-T-tn_gcvAEtH</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Getman, A.</creator><creator>Se-Hwan Yun</creator><creator>Tae-Chan Kim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Improved nonlocal means denoising for images with tone gradients</title><author>Getman, A. ; Se-Hwan Yun ; Tae-Chan Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-563cd6db6b6bc163de9dc5eff8569c74f3d18caf8d20cd5e2f23752022d640f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>block matching</topic><topic>computational efficiency</topic><topic>denoising</topic><topic>nonlocal filtering</topic><topic>tone gradient</topic><toplevel>online_resources</toplevel><creatorcontrib>Getman, A.</creatorcontrib><creatorcontrib>Se-Hwan Yun</creatorcontrib><creatorcontrib>Tae-Chan Kim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Getman, A.</au><au>Se-Hwan Yun</au><au>Tae-Chan Kim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved nonlocal means denoising for images with tone gradients</atitle><btitle>2012 International SoC Design Conference (ISOCC)</btitle><stitle>ISOCC</stitle><date>2012-11</date><risdate>2012</risdate><spage>328</spage><epage>331</epage><pages>328-331</pages><isbn>1467329894</isbn><isbn>9781467329897</isbn><eisbn>9781467329903</eisbn><eisbn>1467329886</eisbn><eisbn>1467329908</eisbn><eisbn>9781467329880</eisbn><abstract>Image denoising is an essential feature of modern Image Signal Processor (ISP). As a part of mobile system, acceptability of denoising methods is determined by electrical power consumption, silicon footprint and architecture of ISP. Non-local means (NLM) denoising algorithm proposed by Buades et al. [1] has very convenient architecture to be implemented either as SoC or CPU/GPU based ISP. Unfortunately, it is prone to produce "staircasing effect" [2] on images having nonzero tone gradients. In this paper we propose a simple yet efficient extension of the original NLM algorithm that addresses the staircasing problem. Unlike existing solutions such as [3] or [5] we intentionally avoid kernel regression methods or multiresolution decompositions and focus on improvement of pattern matching process. As a result, our algorithm does not use costly regression computations and provides considerable subjective and objective performance gain (improvement in PSNR ~0.3dB). Also, the ideas explained here can be used in other image processing methods where block matching plays key role.</abstract><pub>IEEE</pub><doi>10.1109/ISOCC.2012.6407107</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467329894
ispartof 2012 International SoC Design Conference (ISOCC), 2012, p.328-331
issn
language eng
recordid cdi_ieee_primary_6407107
source IEEE Electronic Library (IEL) Conference Proceedings
subjects block matching
computational efficiency
denoising
nonlocal filtering
tone gradient
title Improved nonlocal means denoising for images with tone gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20nonlocal%20means%20denoising%20for%20images%20with%20tone%20gradients&rft.btitle=2012%20International%20SoC%20Design%20Conference%20(ISOCC)&rft.au=Getman,%20A.&rft.date=2012-11&rft.spage=328&rft.epage=331&rft.pages=328-331&rft.isbn=1467329894&rft.isbn_list=9781467329897&rft_id=info:doi/10.1109/ISOCC.2012.6407107&rft_dat=%3Cieee_6IE%3E6407107%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467329903&rft.eisbn_list=1467329886&rft.eisbn_list=1467329908&rft.eisbn_list=9781467329880&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6407107&rfr_iscdi=true