Using Twitter Content to Predict Psychopathy

An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wald, R., Khoshgoftaar, T. M., Napolitano, A., Sumner, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue
container_start_page 394
container_title
container_volume 2
creator Wald, R.
Khoshgoftaar, T. M.
Napolitano, A.
Sumner, C.
description An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One particularly notable personality trait which can be discovered this way is psychopathy: the tendency for disregarding others and the rule of society. In this paper, we explore techniques to apply data mining towards the goal of identifying those who score in the top 1.4% of a well-known psychopathy metric using information available from their Twitter accounts. We apply a newly-proposed form of ensemble learning, Select RUSBoost (which adds feature selection to our earlier imbalance-aware ensemble in order to resolve high dimensionality), employ four classification learners, and use four feature selection techniques. The results show that when using the optimal choices of techniques, we are able to achieve an AUC value of 0.736. Furthermore, these results were only achieved when using the Select RUSBoost technique, demonstrating the importance of feature selection, data sampling, and ensemble learning. Overall, we show that data mining can be a valuable tool for law enforcement and others interested in identifying abnormal psychiatric states from Twitter data.
doi_str_mv 10.1109/ICMLA.2012.228
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6406768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6406768</ieee_id><sourcerecordid>6406768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-5de5efb5c83d937a6157b800a53369c105c8224e7ec2f8248b17ac53079684dc3</originalsourceid><addsrcrecordid>eNotjE1Lw0AUAFekoLa5evGSH2Di27ffxxK0FiL20J7LZvNiI5qU7ILk31vQ0xyGGcbuOZScg3vaVm_1ukTgWCLaK5Y5Y8Fop6TjAq_ZHZfaCKkVdzcsi_ETAC6hFlLessdD7IePfP_Tp0RTXo1DoiHlacx3E7V9SPkuzuE0nn06zSu26PxXpOyfS3Z4ed5Xr0X9vtlW67oIiJAK1ZKirlHBitYJ4zVXprEAXgmhXeBwMYiSDAXsLErbcOODEmCctrINYske_r49ER3PU__tp_moJWijrfgFgAZBzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Twitter Content to Predict Psychopathy</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wald, R. ; Khoshgoftaar, T. M. ; Napolitano, A. ; Sumner, C.</creator><creatorcontrib>Wald, R. ; Khoshgoftaar, T. M. ; Napolitano, A. ; Sumner, C.</creatorcontrib><description>An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One particularly notable personality trait which can be discovered this way is psychopathy: the tendency for disregarding others and the rule of society. In this paper, we explore techniques to apply data mining towards the goal of identifying those who score in the top 1.4% of a well-known psychopathy metric using information available from their Twitter accounts. We apply a newly-proposed form of ensemble learning, Select RUSBoost (which adds feature selection to our earlier imbalance-aware ensemble in order to resolve high dimensionality), employ four classification learners, and use four feature selection techniques. The results show that when using the optimal choices of techniques, we are able to achieve an AUC value of 0.736. Furthermore, these results were only achieved when using the Select RUSBoost technique, demonstrating the importance of feature selection, data sampling, and ensemble learning. Overall, we show that data mining can be a valuable tool for law enforcement and others interested in identifying abnormal psychiatric states from Twitter data.</description><identifier>ISBN: 1467346519</identifier><identifier>ISBN: 9781467346511</identifier><identifier>EISBN: 9780769549132</identifier><identifier>EISBN: 0769549136</identifier><identifier>DOI: 10.1109/ICMLA.2012.228</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>data sampling ; ensemble learning ; feature selection ; Machine learning ; Measurement ; Neurons ; Psychology ; psychopathy ; Support vector machines ; Twitter ; Vegetation</subject><ispartof>2012 11th International Conference on Machine Learning and Applications, 2012, Vol.2, p.394-401</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-5de5efb5c83d937a6157b800a53369c105c8224e7ec2f8248b17ac53079684dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6406768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6406768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wald, R.</creatorcontrib><creatorcontrib>Khoshgoftaar, T. M.</creatorcontrib><creatorcontrib>Napolitano, A.</creatorcontrib><creatorcontrib>Sumner, C.</creatorcontrib><title>Using Twitter Content to Predict Psychopathy</title><title>2012 11th International Conference on Machine Learning and Applications</title><addtitle>icmla</addtitle><description>An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One particularly notable personality trait which can be discovered this way is psychopathy: the tendency for disregarding others and the rule of society. In this paper, we explore techniques to apply data mining towards the goal of identifying those who score in the top 1.4% of a well-known psychopathy metric using information available from their Twitter accounts. We apply a newly-proposed form of ensemble learning, Select RUSBoost (which adds feature selection to our earlier imbalance-aware ensemble in order to resolve high dimensionality), employ four classification learners, and use four feature selection techniques. The results show that when using the optimal choices of techniques, we are able to achieve an AUC value of 0.736. Furthermore, these results were only achieved when using the Select RUSBoost technique, demonstrating the importance of feature selection, data sampling, and ensemble learning. Overall, we show that data mining can be a valuable tool for law enforcement and others interested in identifying abnormal psychiatric states from Twitter data.</description><subject>data sampling</subject><subject>ensemble learning</subject><subject>feature selection</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Neurons</subject><subject>Psychology</subject><subject>psychopathy</subject><subject>Support vector machines</subject><subject>Twitter</subject><subject>Vegetation</subject><isbn>1467346519</isbn><isbn>9781467346511</isbn><isbn>9780769549132</isbn><isbn>0769549136</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1Lw0AUAFekoLa5evGSH2Di27ffxxK0FiL20J7LZvNiI5qU7ILk31vQ0xyGGcbuOZScg3vaVm_1ukTgWCLaK5Y5Y8Fop6TjAq_ZHZfaCKkVdzcsi_ETAC6hFlLessdD7IePfP_Tp0RTXo1DoiHlacx3E7V9SPkuzuE0nn06zSu26PxXpOyfS3Z4ed5Xr0X9vtlW67oIiJAK1ZKirlHBitYJ4zVXprEAXgmhXeBwMYiSDAXsLErbcOODEmCctrINYske_r49ER3PU__tp_moJWijrfgFgAZBzw</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Wald, R.</creator><creator>Khoshgoftaar, T. M.</creator><creator>Napolitano, A.</creator><creator>Sumner, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201212</creationdate><title>Using Twitter Content to Predict Psychopathy</title><author>Wald, R. ; Khoshgoftaar, T. M. ; Napolitano, A. ; Sumner, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-5de5efb5c83d937a6157b800a53369c105c8224e7ec2f8248b17ac53079684dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>data sampling</topic><topic>ensemble learning</topic><topic>feature selection</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Neurons</topic><topic>Psychology</topic><topic>psychopathy</topic><topic>Support vector machines</topic><topic>Twitter</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Wald, R.</creatorcontrib><creatorcontrib>Khoshgoftaar, T. M.</creatorcontrib><creatorcontrib>Napolitano, A.</creatorcontrib><creatorcontrib>Sumner, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wald, R.</au><au>Khoshgoftaar, T. M.</au><au>Napolitano, A.</au><au>Sumner, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Twitter Content to Predict Psychopathy</atitle><btitle>2012 11th International Conference on Machine Learning and Applications</btitle><stitle>icmla</stitle><date>2012-12</date><risdate>2012</risdate><volume>2</volume><spage>394</spage><epage>401</epage><pages>394-401</pages><isbn>1467346519</isbn><isbn>9781467346511</isbn><eisbn>9780769549132</eisbn><eisbn>0769549136</eisbn><coden>IEEPAD</coden><abstract>An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One particularly notable personality trait which can be discovered this way is psychopathy: the tendency for disregarding others and the rule of society. In this paper, we explore techniques to apply data mining towards the goal of identifying those who score in the top 1.4% of a well-known psychopathy metric using information available from their Twitter accounts. We apply a newly-proposed form of ensemble learning, Select RUSBoost (which adds feature selection to our earlier imbalance-aware ensemble in order to resolve high dimensionality), employ four classification learners, and use four feature selection techniques. The results show that when using the optimal choices of techniques, we are able to achieve an AUC value of 0.736. Furthermore, these results were only achieved when using the Select RUSBoost technique, demonstrating the importance of feature selection, data sampling, and ensemble learning. Overall, we show that data mining can be a valuable tool for law enforcement and others interested in identifying abnormal psychiatric states from Twitter data.</abstract><pub>IEEE</pub><doi>10.1109/ICMLA.2012.228</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467346519
ispartof 2012 11th International Conference on Machine Learning and Applications, 2012, Vol.2, p.394-401
issn
language eng
recordid cdi_ieee_primary_6406768
source IEEE Electronic Library (IEL) Conference Proceedings
subjects data sampling
ensemble learning
feature selection
Machine learning
Measurement
Neurons
Psychology
psychopathy
Support vector machines
Twitter
Vegetation
title Using Twitter Content to Predict Psychopathy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Twitter%20Content%20to%20Predict%20Psychopathy&rft.btitle=2012%2011th%20International%20Conference%20on%20Machine%20Learning%20and%20Applications&rft.au=Wald,%20R.&rft.date=2012-12&rft.volume=2&rft.spage=394&rft.epage=401&rft.pages=394-401&rft.isbn=1467346519&rft.isbn_list=9781467346511&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICMLA.2012.228&rft_dat=%3Cieee_6IE%3E6406768%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549132&rft.eisbn_list=0769549136&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6406768&rfr_iscdi=true