Cathode spot dynamics on pure metals and composite materials in high-current vacuum arcs

An investigation has been carried out of cathode spot dynamics in a triggered vacuum arc in a demountable chamber. A rectangular current pulse of 1-5 kA, 1-5 ms has been used. Sufficient statistics were collected. The expansion of a cathode spot ring on a clean, pure metal surface was corroborated t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 1997-08, Vol.25 (4), p.564-570
Hauptverfasser: Chaly, A.M., Logatchev, A.A., Shkol'nik, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An investigation has been carried out of cathode spot dynamics in a triggered vacuum arc in a demountable chamber. A rectangular current pulse of 1-5 kA, 1-5 ms has been used. Sufficient statistics were collected. The expansion of a cathode spot ring on a clean, pure metal surface was corroborated to be a retrograde movement in the self-magnetic field which obeys the same law as the movement of a single spot in an external magnetic field. The influence of a contact gap of 0.5-8 mm and current on the dynamics of cathode spots was investigated. The gap dependence of the proportional coefficient between the spot velocity and magnetic field in the case of a pure copper cathode was obtained. A phenomenon was discovered, where a group of cathode spots form in the short arcs on the CuCr cathodes after a transition diffuse arc stage. The follow-up investigation revealed that a close interrelation exists between the cathode and anode processes in short arcs. This interrelation is responsible for the appearance of the discovered phenomenon. Short-circuit performance tests conducted for a commercial vacuum interrupter proved cathode spot group formation to be responsible for the interruption failure at short contact gaps.
ISSN:0093-3813
1939-9375
DOI:10.1109/27.640666