Adaptive reinforcement learning method for networks-on-chip
In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | |
container_start_page | 236 |
container_title | |
container_volume | |
creator | Farahnakian, F. Ebrahimi, M. Daneshtalab, M. Plosila, J. Liljeberg, P. |
description | In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms. |
doi_str_mv | 10.1109/SAMOS.2012.6404180 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6404180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6404180</ieee_id><sourcerecordid>6404180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d76c0ee8ca9011b9c3eea8bd20659087bd469dc25716a611d2e1c99f4d481b383</originalsourceid><addsrcrecordid>eNpVj89KxDAYxCMiKGtfQC99gdZ8SZo_eCqLusLKHnb3vKTJVze6TUtaFN_egnvxNAzDb4Yh5A5oCUDNw7Z-22xLRoGVUlABml6QzCgNQirOmFH88p-vzDXJxvGDUjrz0nBxQx5rb4cpfGGeMMS2Tw47jFN-QptiiO95h9Ox9_mc5BGn7z59jkUfC3cMwy25au1pxOysC7J_ftotV8V68_K6rNdFAFVNhVfSUUTtrJl3G-M4otWNZ1RWhmrVeCGNd6xSIK0E8AzBGdMKLzQ0XPMFuf_rDYh4GFLobPo5nC_zX3tDSfc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive reinforcement learning method for networks-on-chip</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Farahnakian, F. ; Ebrahimi, M. ; Daneshtalab, M. ; Plosila, J. ; Liljeberg, P.</creator><creatorcontrib>Farahnakian, F. ; Ebrahimi, M. ; Daneshtalab, M. ; Plosila, J. ; Liljeberg, P.</creatorcontrib><description>In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.</description><identifier>ISBN: 9781467322959</identifier><identifier>ISBN: 1467322954</identifier><identifier>EISBN: 9781467322973</identifier><identifier>EISBN: 1467322970</identifier><identifier>EISBN: 9781467322966</identifier><identifier>EISBN: 1467322962</identifier><identifier>DOI: 10.1109/SAMOS.2012.6404180</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Routing ; Adaptive systems ; Algorithm design and analysis ; Classification algorithms ; Dual Reinforcement Learning ; Estimation ; Heuristic algorithms ; Learning ; Networks-on-Chip ; Q-routing ; Routing</subject><ispartof>2012 International Conference on Embedded Computer Systems (SAMOS), 2012, p.236-243</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6404180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6404180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farahnakian, F.</creatorcontrib><creatorcontrib>Ebrahimi, M.</creatorcontrib><creatorcontrib>Daneshtalab, M.</creatorcontrib><creatorcontrib>Plosila, J.</creatorcontrib><creatorcontrib>Liljeberg, P.</creatorcontrib><title>Adaptive reinforcement learning method for networks-on-chip</title><title>2012 International Conference on Embedded Computer Systems (SAMOS)</title><addtitle>SAMOS</addtitle><description>In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.</description><subject>Adaptive Routing</subject><subject>Adaptive systems</subject><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Dual Reinforcement Learning</subject><subject>Estimation</subject><subject>Heuristic algorithms</subject><subject>Learning</subject><subject>Networks-on-Chip</subject><subject>Q-routing</subject><subject>Routing</subject><isbn>9781467322959</isbn><isbn>1467322954</isbn><isbn>9781467322973</isbn><isbn>1467322970</isbn><isbn>9781467322966</isbn><isbn>1467322962</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj89KxDAYxCMiKGtfQC99gdZ8SZo_eCqLusLKHnb3vKTJVze6TUtaFN_egnvxNAzDb4Yh5A5oCUDNw7Z-22xLRoGVUlABml6QzCgNQirOmFH88p-vzDXJxvGDUjrz0nBxQx5rb4cpfGGeMMS2Tw47jFN-QptiiO95h9Ox9_mc5BGn7z59jkUfC3cMwy25au1pxOysC7J_ftotV8V68_K6rNdFAFVNhVfSUUTtrJl3G-M4otWNZ1RWhmrVeCGNd6xSIK0E8AzBGdMKLzQ0XPMFuf_rDYh4GFLobPo5nC_zX3tDSfc</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Farahnakian, F.</creator><creator>Ebrahimi, M.</creator><creator>Daneshtalab, M.</creator><creator>Plosila, J.</creator><creator>Liljeberg, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Adaptive reinforcement learning method for networks-on-chip</title><author>Farahnakian, F. ; Ebrahimi, M. ; Daneshtalab, M. ; Plosila, J. ; Liljeberg, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d76c0ee8ca9011b9c3eea8bd20659087bd469dc25716a611d2e1c99f4d481b383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive Routing</topic><topic>Adaptive systems</topic><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Dual Reinforcement Learning</topic><topic>Estimation</topic><topic>Heuristic algorithms</topic><topic>Learning</topic><topic>Networks-on-Chip</topic><topic>Q-routing</topic><topic>Routing</topic><toplevel>online_resources</toplevel><creatorcontrib>Farahnakian, F.</creatorcontrib><creatorcontrib>Ebrahimi, M.</creatorcontrib><creatorcontrib>Daneshtalab, M.</creatorcontrib><creatorcontrib>Plosila, J.</creatorcontrib><creatorcontrib>Liljeberg, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farahnakian, F.</au><au>Ebrahimi, M.</au><au>Daneshtalab, M.</au><au>Plosila, J.</au><au>Liljeberg, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive reinforcement learning method for networks-on-chip</atitle><btitle>2012 International Conference on Embedded Computer Systems (SAMOS)</btitle><stitle>SAMOS</stitle><date>2012-07</date><risdate>2012</risdate><spage>236</spage><epage>243</epage><pages>236-243</pages><isbn>9781467322959</isbn><isbn>1467322954</isbn><eisbn>9781467322973</eisbn><eisbn>1467322970</eisbn><eisbn>9781467322966</eisbn><eisbn>1467322962</eisbn><abstract>In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.</abstract><pub>IEEE</pub><doi>10.1109/SAMOS.2012.6404180</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467322959 |
ispartof | 2012 International Conference on Embedded Computer Systems (SAMOS), 2012, p.236-243 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6404180 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive Routing Adaptive systems Algorithm design and analysis Classification algorithms Dual Reinforcement Learning Estimation Heuristic algorithms Learning Networks-on-Chip Q-routing Routing |
title | Adaptive reinforcement learning method for networks-on-chip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20reinforcement%20learning%20method%20for%20networks-on-chip&rft.btitle=2012%20International%20Conference%20on%20Embedded%20Computer%20Systems%20(SAMOS)&rft.au=Farahnakian,%20F.&rft.date=2012-07&rft.spage=236&rft.epage=243&rft.pages=236-243&rft.isbn=9781467322959&rft.isbn_list=1467322954&rft_id=info:doi/10.1109/SAMOS.2012.6404180&rft_dat=%3Cieee_6IE%3E6404180%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467322973&rft.eisbn_list=1467322970&rft.eisbn_list=9781467322966&rft.eisbn_list=1467322962&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6404180&rfr_iscdi=true |