Adaptive reinforcement learning method for networks-on-chip

In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farahnakian, F., Ebrahimi, M., Daneshtalab, M., Plosila, J., Liljeberg, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue
container_start_page 236
container_title
container_volume
creator Farahnakian, F.
Ebrahimi, M.
Daneshtalab, M.
Plosila, J.
Liljeberg, P.
description In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.
doi_str_mv 10.1109/SAMOS.2012.6404180
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6404180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6404180</ieee_id><sourcerecordid>6404180</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d76c0ee8ca9011b9c3eea8bd20659087bd469dc25716a611d2e1c99f4d481b383</originalsourceid><addsrcrecordid>eNpVj89KxDAYxCMiKGtfQC99gdZ8SZo_eCqLusLKHnb3vKTJVze6TUtaFN_egnvxNAzDb4Yh5A5oCUDNw7Z-22xLRoGVUlABml6QzCgNQirOmFH88p-vzDXJxvGDUjrz0nBxQx5rb4cpfGGeMMS2Tw47jFN-QptiiO95h9Ox9_mc5BGn7z59jkUfC3cMwy25au1pxOysC7J_ftotV8V68_K6rNdFAFVNhVfSUUTtrJl3G-M4otWNZ1RWhmrVeCGNd6xSIK0E8AzBGdMKLzQ0XPMFuf_rDYh4GFLobPo5nC_zX3tDSfc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive reinforcement learning method for networks-on-chip</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Farahnakian, F. ; Ebrahimi, M. ; Daneshtalab, M. ; Plosila, J. ; Liljeberg, P.</creator><creatorcontrib>Farahnakian, F. ; Ebrahimi, M. ; Daneshtalab, M. ; Plosila, J. ; Liljeberg, P.</creatorcontrib><description>In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.</description><identifier>ISBN: 9781467322959</identifier><identifier>ISBN: 1467322954</identifier><identifier>EISBN: 9781467322973</identifier><identifier>EISBN: 1467322970</identifier><identifier>EISBN: 9781467322966</identifier><identifier>EISBN: 1467322962</identifier><identifier>DOI: 10.1109/SAMOS.2012.6404180</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Routing ; Adaptive systems ; Algorithm design and analysis ; Classification algorithms ; Dual Reinforcement Learning ; Estimation ; Heuristic algorithms ; Learning ; Networks-on-Chip ; Q-routing ; Routing</subject><ispartof>2012 International Conference on Embedded Computer Systems (SAMOS), 2012, p.236-243</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6404180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6404180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Farahnakian, F.</creatorcontrib><creatorcontrib>Ebrahimi, M.</creatorcontrib><creatorcontrib>Daneshtalab, M.</creatorcontrib><creatorcontrib>Plosila, J.</creatorcontrib><creatorcontrib>Liljeberg, P.</creatorcontrib><title>Adaptive reinforcement learning method for networks-on-chip</title><title>2012 International Conference on Embedded Computer Systems (SAMOS)</title><addtitle>SAMOS</addtitle><description>In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.</description><subject>Adaptive Routing</subject><subject>Adaptive systems</subject><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Dual Reinforcement Learning</subject><subject>Estimation</subject><subject>Heuristic algorithms</subject><subject>Learning</subject><subject>Networks-on-Chip</subject><subject>Q-routing</subject><subject>Routing</subject><isbn>9781467322959</isbn><isbn>1467322954</isbn><isbn>9781467322973</isbn><isbn>1467322970</isbn><isbn>9781467322966</isbn><isbn>1467322962</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj89KxDAYxCMiKGtfQC99gdZ8SZo_eCqLusLKHnb3vKTJVze6TUtaFN_egnvxNAzDb4Yh5A5oCUDNw7Z-22xLRoGVUlABml6QzCgNQirOmFH88p-vzDXJxvGDUjrz0nBxQx5rb4cpfGGeMMS2Tw47jFN-QptiiO95h9Ox9_mc5BGn7z59jkUfC3cMwy25au1pxOysC7J_ftotV8V68_K6rNdFAFVNhVfSUUTtrJl3G-M4otWNZ1RWhmrVeCGNd6xSIK0E8AzBGdMKLzQ0XPMFuf_rDYh4GFLobPo5nC_zX3tDSfc</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Farahnakian, F.</creator><creator>Ebrahimi, M.</creator><creator>Daneshtalab, M.</creator><creator>Plosila, J.</creator><creator>Liljeberg, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Adaptive reinforcement learning method for networks-on-chip</title><author>Farahnakian, F. ; Ebrahimi, M. ; Daneshtalab, M. ; Plosila, J. ; Liljeberg, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d76c0ee8ca9011b9c3eea8bd20659087bd469dc25716a611d2e1c99f4d481b383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptive Routing</topic><topic>Adaptive systems</topic><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Dual Reinforcement Learning</topic><topic>Estimation</topic><topic>Heuristic algorithms</topic><topic>Learning</topic><topic>Networks-on-Chip</topic><topic>Q-routing</topic><topic>Routing</topic><toplevel>online_resources</toplevel><creatorcontrib>Farahnakian, F.</creatorcontrib><creatorcontrib>Ebrahimi, M.</creatorcontrib><creatorcontrib>Daneshtalab, M.</creatorcontrib><creatorcontrib>Plosila, J.</creatorcontrib><creatorcontrib>Liljeberg, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farahnakian, F.</au><au>Ebrahimi, M.</au><au>Daneshtalab, M.</au><au>Plosila, J.</au><au>Liljeberg, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive reinforcement learning method for networks-on-chip</atitle><btitle>2012 International Conference on Embedded Computer Systems (SAMOS)</btitle><stitle>SAMOS</stitle><date>2012-07</date><risdate>2012</risdate><spage>236</spage><epage>243</epage><pages>236-243</pages><isbn>9781467322959</isbn><isbn>1467322954</isbn><eisbn>9781467322973</eisbn><eisbn>1467322970</eisbn><eisbn>9781467322966</eisbn><eisbn>1467322962</eisbn><abstract>In this paper, we propose a congestion-aware routing algorithm based on Dual Reinforcement Q-routing. In this method, local and global congestion information of the network is provided for each router, utilizing learning packets. This information should be dynamically updated according to the changing traffic conditions in the network. For this purpose, a congestion detection method is presented to measure the average of free buffer slots in a specific time interval. This value is compared with maximum and minimum threshold values and based on the comparison result, the learning rate is updated. If the learning rate is a large value, it means the network gets congested and global information is more emphasized than local information. In contrast, local information is more important than global when a router receives few packets in a time interval. Experimental results for different traffic patterns and network loads show that the proposed method improves the network performance compared with the standard Q-routing, DRQ-routing, and Dynamic XY-routing algorithms.</abstract><pub>IEEE</pub><doi>10.1109/SAMOS.2012.6404180</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467322959
ispartof 2012 International Conference on Embedded Computer Systems (SAMOS), 2012, p.236-243
issn
language eng
recordid cdi_ieee_primary_6404180
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Routing
Adaptive systems
Algorithm design and analysis
Classification algorithms
Dual Reinforcement Learning
Estimation
Heuristic algorithms
Learning
Networks-on-Chip
Q-routing
Routing
title Adaptive reinforcement learning method for networks-on-chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20reinforcement%20learning%20method%20for%20networks-on-chip&rft.btitle=2012%20International%20Conference%20on%20Embedded%20Computer%20Systems%20(SAMOS)&rft.au=Farahnakian,%20F.&rft.date=2012-07&rft.spage=236&rft.epage=243&rft.pages=236-243&rft.isbn=9781467322959&rft.isbn_list=1467322954&rft_id=info:doi/10.1109/SAMOS.2012.6404180&rft_dat=%3Cieee_6IE%3E6404180%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467322973&rft.eisbn_list=1467322970&rft.eisbn_list=9781467322966&rft.eisbn_list=1467322962&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6404180&rfr_iscdi=true