LPV gray box identification of industrial robots for control

This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Knoblach, A., Saupe, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 836
container_issue
container_start_page 831
container_title
container_volume
creator Knoblach, A.
Saupe, F.
description This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.
doi_str_mv 10.1109/CCA.2012.6402440
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6402440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6402440</ieee_id><sourcerecordid>6402440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-25e56ea36990ffb9138a38079b63644fc12e9556a4a590ab54204610c73a9e733</originalsourceid><addsrcrecordid>eNpVkLtKBDEUQOMLHNftBZv8wIz35uYxAZtlWB8woIXaLpnZRCLrRDIR3L-3cBurUxw4xWHsCqFBBHvTdatGAIpGSxBSwhFbWtOi1IakAgnHrBLK6JoEwsk_R3TKKoRW1WitOGcX8_wBAMagrtht__zG37Pb8yH98Lj1U4khjq7ENPEUeJy233PJ0e14TkMqMw8p8zFNJafdJTsLbjf75YEL9nq3fuke6v7p_rFb9XVEo0otlFfaO9LWQgiDRWodtWDsoElLGUYU3iqlnXTKghuUFCA1wmjIWW-IFuz6rxu995uvHD9d3m8OI-gX3JdLFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LPV gray box identification of industrial robots for control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Knoblach, A. ; Saupe, F.</creator><creatorcontrib>Knoblach, A. ; Saupe, F.</creatorcontrib><description>This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.</description><identifier>ISSN: 1085-1992</identifier><identifier>ISBN: 9781467345033</identifier><identifier>ISBN: 1467345032</identifier><identifier>EISSN: 2576-3210</identifier><identifier>EISBN: 9781467345040</identifier><identifier>EISBN: 9781467345057</identifier><identifier>EISBN: 1467345040</identifier><identifier>EISBN: 1467345059</identifier><identifier>DOI: 10.1109/CCA.2012.6402440</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Gears ; Job shop scheduling ; Mathematical model ; Service robots ; Solid modeling</subject><ispartof>2012 IEEE International Conference on Control Applications, 2012, p.831-836</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6402440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6402440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Knoblach, A.</creatorcontrib><creatorcontrib>Saupe, F.</creatorcontrib><title>LPV gray box identification of industrial robots for control</title><title>2012 IEEE International Conference on Control Applications</title><addtitle>CCA</addtitle><description>This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.</description><subject>Analytical models</subject><subject>Gears</subject><subject>Job shop scheduling</subject><subject>Mathematical model</subject><subject>Service robots</subject><subject>Solid modeling</subject><issn>1085-1992</issn><issn>2576-3210</issn><isbn>9781467345033</isbn><isbn>1467345032</isbn><isbn>9781467345040</isbn><isbn>9781467345057</isbn><isbn>1467345040</isbn><isbn>1467345059</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkLtKBDEUQOMLHNftBZv8wIz35uYxAZtlWB8woIXaLpnZRCLrRDIR3L-3cBurUxw4xWHsCqFBBHvTdatGAIpGSxBSwhFbWtOi1IakAgnHrBLK6JoEwsk_R3TKKoRW1WitOGcX8_wBAMagrtht__zG37Pb8yH98Lj1U4khjq7ENPEUeJy233PJ0e14TkMqMw8p8zFNJafdJTsLbjf75YEL9nq3fuke6v7p_rFb9XVEo0otlFfaO9LWQgiDRWodtWDsoElLGUYU3iqlnXTKghuUFCA1wmjIWW-IFuz6rxu995uvHD9d3m8OI-gX3JdLFw</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Knoblach, A.</creator><creator>Saupe, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>LPV gray box identification of industrial robots for control</title><author>Knoblach, A. ; Saupe, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-25e56ea36990ffb9138a38079b63644fc12e9556a4a590ab54204610c73a9e733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical models</topic><topic>Gears</topic><topic>Job shop scheduling</topic><topic>Mathematical model</topic><topic>Service robots</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Knoblach, A.</creatorcontrib><creatorcontrib>Saupe, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knoblach, A.</au><au>Saupe, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LPV gray box identification of industrial robots for control</atitle><btitle>2012 IEEE International Conference on Control Applications</btitle><stitle>CCA</stitle><date>2012-10</date><risdate>2012</risdate><spage>831</spage><epage>836</epage><pages>831-836</pages><issn>1085-1992</issn><eissn>2576-3210</eissn><isbn>9781467345033</isbn><isbn>1467345032</isbn><eisbn>9781467345040</eisbn><eisbn>9781467345057</eisbn><eisbn>1467345040</eisbn><eisbn>1467345059</eisbn><abstract>This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.</abstract><pub>IEEE</pub><doi>10.1109/CCA.2012.6402440</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1085-1992
ispartof 2012 IEEE International Conference on Control Applications, 2012, p.831-836
issn 1085-1992
2576-3210
language eng
recordid cdi_ieee_primary_6402440
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Gears
Job shop scheduling
Mathematical model
Service robots
Solid modeling
title LPV gray box identification of industrial robots for control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LPV%20gray%20box%20identification%20of%20industrial%20robots%20for%20control&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Control%20Applications&rft.au=Knoblach,%20A.&rft.date=2012-10&rft.spage=831&rft.epage=836&rft.pages=831-836&rft.issn=1085-1992&rft.eissn=2576-3210&rft.isbn=9781467345033&rft.isbn_list=1467345032&rft_id=info:doi/10.1109/CCA.2012.6402440&rft_dat=%3Cieee_6IE%3E6402440%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467345040&rft.eisbn_list=9781467345057&rft.eisbn_list=1467345040&rft.eisbn_list=1467345059&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6402440&rfr_iscdi=true