LPV gray box identification of industrial robots for control
This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 836 |
---|---|
container_issue | |
container_start_page | 831 |
container_title | |
container_volume | |
creator | Knoblach, A. Saupe, F. |
description | This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions. |
doi_str_mv | 10.1109/CCA.2012.6402440 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6402440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6402440</ieee_id><sourcerecordid>6402440</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-25e56ea36990ffb9138a38079b63644fc12e9556a4a590ab54204610c73a9e733</originalsourceid><addsrcrecordid>eNpVkLtKBDEUQOMLHNftBZv8wIz35uYxAZtlWB8woIXaLpnZRCLrRDIR3L-3cBurUxw4xWHsCqFBBHvTdatGAIpGSxBSwhFbWtOi1IakAgnHrBLK6JoEwsk_R3TKKoRW1WitOGcX8_wBAMagrtht__zG37Pb8yH98Lj1U4khjq7ENPEUeJy233PJ0e14TkMqMw8p8zFNJafdJTsLbjf75YEL9nq3fuke6v7p_rFb9XVEo0otlFfaO9LWQgiDRWodtWDsoElLGUYU3iqlnXTKghuUFCA1wmjIWW-IFuz6rxu995uvHD9d3m8OI-gX3JdLFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>LPV gray box identification of industrial robots for control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Knoblach, A. ; Saupe, F.</creator><creatorcontrib>Knoblach, A. ; Saupe, F.</creatorcontrib><description>This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.</description><identifier>ISSN: 1085-1992</identifier><identifier>ISBN: 9781467345033</identifier><identifier>ISBN: 1467345032</identifier><identifier>EISSN: 2576-3210</identifier><identifier>EISBN: 9781467345040</identifier><identifier>EISBN: 9781467345057</identifier><identifier>EISBN: 1467345040</identifier><identifier>EISBN: 1467345059</identifier><identifier>DOI: 10.1109/CCA.2012.6402440</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Gears ; Job shop scheduling ; Mathematical model ; Service robots ; Solid modeling</subject><ispartof>2012 IEEE International Conference on Control Applications, 2012, p.831-836</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6402440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6402440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Knoblach, A.</creatorcontrib><creatorcontrib>Saupe, F.</creatorcontrib><title>LPV gray box identification of industrial robots for control</title><title>2012 IEEE International Conference on Control Applications</title><addtitle>CCA</addtitle><description>This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.</description><subject>Analytical models</subject><subject>Gears</subject><subject>Job shop scheduling</subject><subject>Mathematical model</subject><subject>Service robots</subject><subject>Solid modeling</subject><issn>1085-1992</issn><issn>2576-3210</issn><isbn>9781467345033</isbn><isbn>1467345032</isbn><isbn>9781467345040</isbn><isbn>9781467345057</isbn><isbn>1467345040</isbn><isbn>1467345059</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkLtKBDEUQOMLHNftBZv8wIz35uYxAZtlWB8woIXaLpnZRCLrRDIR3L-3cBurUxw4xWHsCqFBBHvTdatGAIpGSxBSwhFbWtOi1IakAgnHrBLK6JoEwsk_R3TKKoRW1WitOGcX8_wBAMagrtht__zG37Pb8yH98Lj1U4khjq7ENPEUeJy233PJ0e14TkMqMw8p8zFNJafdJTsLbjf75YEL9nq3fuke6v7p_rFb9XVEo0otlFfaO9LWQgiDRWodtWDsoElLGUYU3iqlnXTKghuUFCA1wmjIWW-IFuz6rxu995uvHD9d3m8OI-gX3JdLFw</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Knoblach, A.</creator><creator>Saupe, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>LPV gray box identification of industrial robots for control</title><author>Knoblach, A. ; Saupe, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-25e56ea36990ffb9138a38079b63644fc12e9556a4a590ab54204610c73a9e733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical models</topic><topic>Gears</topic><topic>Job shop scheduling</topic><topic>Mathematical model</topic><topic>Service robots</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Knoblach, A.</creatorcontrib><creatorcontrib>Saupe, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knoblach, A.</au><au>Saupe, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>LPV gray box identification of industrial robots for control</atitle><btitle>2012 IEEE International Conference on Control Applications</btitle><stitle>CCA</stitle><date>2012-10</date><risdate>2012</risdate><spage>831</spage><epage>836</epage><pages>831-836</pages><issn>1085-1992</issn><eissn>2576-3210</eissn><isbn>9781467345033</isbn><isbn>1467345032</isbn><eisbn>9781467345040</eisbn><eisbn>9781467345057</eisbn><eisbn>1467345040</eisbn><eisbn>1467345059</eisbn><abstract>This paper treats the linear parameter-varying (LPV) model identification of an industrial robot. Since the model is supposed to be used to design an LPV controller, it must simultaneously feature low complexity and adequate accuracy. As for most systems, a simplified analytical model structure can be derived for the robot based on the laws of physics. Some physical model parameters however must be experimentally determined. Due to the model simplifications, these physical parameters vary over the workspace. In order to capture this variation in an LPV model, the physical parameters are scheduled. Based on an understanding of the system, three different scheduling laws are designed and the resulting LPV models are compared to experimentally determined frequency response functions.</abstract><pub>IEEE</pub><doi>10.1109/CCA.2012.6402440</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1085-1992 |
ispartof | 2012 IEEE International Conference on Control Applications, 2012, p.831-836 |
issn | 1085-1992 2576-3210 |
language | eng |
recordid | cdi_ieee_primary_6402440 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Analytical models Gears Job shop scheduling Mathematical model Service robots Solid modeling |
title | LPV gray box identification of industrial robots for control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=LPV%20gray%20box%20identification%20of%20industrial%20robots%20for%20control&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Control%20Applications&rft.au=Knoblach,%20A.&rft.date=2012-10&rft.spage=831&rft.epage=836&rft.pages=831-836&rft.issn=1085-1992&rft.eissn=2576-3210&rft.isbn=9781467345033&rft.isbn_list=1467345032&rft_id=info:doi/10.1109/CCA.2012.6402440&rft_dat=%3Cieee_6IE%3E6402440%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467345040&rft.eisbn_list=9781467345057&rft.eisbn_list=1467345040&rft.eisbn_list=1467345059&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6402440&rfr_iscdi=true |