Learning postures through an imitation game between a human and a robot

In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boucenna, S., Delaherche, E., Chetouani, M., Gaussier, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Boucenna, S.
Delaherche, E.
Chetouani, M.
Gaussier, P.
description In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.
doi_str_mv 10.1109/DevLrn.2012.6400880
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6400880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6400880</ieee_id><sourcerecordid>oai_HAL_hal_02423167v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-db2561450b23acb6fc59f05aa589978861ceaf9ffc3be69409548b3e34651b343</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxFdFsNZ-gl726iF1_2f3WKq2QsCLgrfwNt00K82mbDYVv72RVk_zmPkx8AahOSULSol5eHTHIoYFI5QtlCBEa3KBZibXVKicC6OkuUQTRhXNjMjVFbr9C8THDZr1_SchZGxSmpEJWhcOYvBhhw9dn4boepya2A27BkPAvvUJku8C3kHrsHXpy7mAATdDO8YQtuMdO9ulO3Rdw753s7NO0fvz09tqkxWv65fVssgqJk3KtpZJRYUklnGorKoraWoiAaQ24wta0cpBbeq64tYpI4iRQlvuuFCSWi74FN2fehvYl4foW4jfZQe-3CyL8tcjTDBOVX6kIzs_sd459w-fN-M_s0pdUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning postures through an imitation game between a human and a robot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boucenna, S. ; Delaherche, E. ; Chetouani, M. ; Gaussier, P.</creator><creatorcontrib>Boucenna, S. ; Delaherche, E. ; Chetouani, M. ; Gaussier, P.</creatorcontrib><description>In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.</description><identifier>ISBN: 146734964X</identifier><identifier>ISBN: 9781467349642</identifier><identifier>EISSN: 2161-9476</identifier><identifier>EISBN: 9781467349659</identifier><identifier>EISBN: 1467349631</identifier><identifier>EISBN: 9781467349635</identifier><identifier>EISBN: 1467349658</identifier><identifier>DOI: 10.1109/DevLrn.2012.6400880</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Cognitive science ; Computer Science ; Computer Vision and Pattern Recognition ; Education ; Face recognition ; Feature extraction ; Humans ; Neuroscience ; Psychology ; Robot sensing systems ; Robotics ; Signal and Image Processing ; Visualization</subject><ispartof>2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), 2012, p.1-2</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-db2561450b23acb6fc59f05aa589978861ceaf9ffc3be69409548b3e34651b343</citedby><orcidid>0000-0002-2920-4539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6400880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6400880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02423167$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boucenna, S.</creatorcontrib><creatorcontrib>Delaherche, E.</creatorcontrib><creatorcontrib>Chetouani, M.</creatorcontrib><creatorcontrib>Gaussier, P.</creatorcontrib><title>Learning postures through an imitation game between a human and a robot</title><title>2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL)</title><addtitle>DevLrn</addtitle><description>In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.</description><subject>Artificial Intelligence</subject><subject>Cognitive science</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Education</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Neuroscience</subject><subject>Psychology</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Signal and Image Processing</subject><subject>Visualization</subject><issn>2161-9476</issn><isbn>146734964X</isbn><isbn>9781467349642</isbn><isbn>9781467349659</isbn><isbn>1467349631</isbn><isbn>9781467349635</isbn><isbn>1467349658</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AUxFdFsNZ-gl726iF1_2f3WKq2QsCLgrfwNt00K82mbDYVv72RVk_zmPkx8AahOSULSol5eHTHIoYFI5QtlCBEa3KBZibXVKicC6OkuUQTRhXNjMjVFbr9C8THDZr1_SchZGxSmpEJWhcOYvBhhw9dn4boepya2A27BkPAvvUJku8C3kHrsHXpy7mAATdDO8YQtuMdO9ulO3Rdw753s7NO0fvz09tqkxWv65fVssgqJk3KtpZJRYUklnGorKoraWoiAaQ24wta0cpBbeq64tYpI4iRQlvuuFCSWi74FN2fehvYl4foW4jfZQe-3CyL8tcjTDBOVX6kIzs_sd459w-fN-M_s0pdUw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Boucenna, S.</creator><creator>Delaherche, E.</creator><creator>Chetouani, M.</creator><creator>Gaussier, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2920-4539</orcidid></search><sort><creationdate>201211</creationdate><title>Learning postures through an imitation game between a human and a robot</title><author>Boucenna, S. ; Delaherche, E. ; Chetouani, M. ; Gaussier, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-db2561450b23acb6fc59f05aa589978861ceaf9ffc3be69409548b3e34651b343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Cognitive science</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Education</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Neuroscience</topic><topic>Psychology</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Signal and Image Processing</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Boucenna, S.</creatorcontrib><creatorcontrib>Delaherche, E.</creatorcontrib><creatorcontrib>Chetouani, M.</creatorcontrib><creatorcontrib>Gaussier, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boucenna, S.</au><au>Delaherche, E.</au><au>Chetouani, M.</au><au>Gaussier, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning postures through an imitation game between a human and a robot</atitle><btitle>2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL)</btitle><stitle>DevLrn</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2161-9476</eissn><isbn>146734964X</isbn><isbn>9781467349642</isbn><eisbn>9781467349659</eisbn><eisbn>1467349631</eisbn><eisbn>9781467349635</eisbn><eisbn>1467349658</eisbn><abstract>In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.</abstract><pub>IEEE</pub><doi>10.1109/DevLrn.2012.6400880</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2920-4539</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 146734964X
ispartof 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), 2012, p.1-2
issn 2161-9476
language eng
recordid cdi_ieee_primary_6400880
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial Intelligence
Cognitive science
Computer Science
Computer Vision and Pattern Recognition
Education
Face recognition
Feature extraction
Humans
Neuroscience
Psychology
Robot sensing systems
Robotics
Signal and Image Processing
Visualization
title Learning postures through an imitation game between a human and a robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20postures%20through%20an%20imitation%20game%20between%20a%20human%20and%20a%20robot&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Development%20and%20Learning%20and%20Epigenetic%20Robotics%20(ICDL)&rft.au=Boucenna,%20S.&rft.date=2012-11&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2161-9476&rft.isbn=146734964X&rft.isbn_list=9781467349642&rft_id=info:doi/10.1109/DevLrn.2012.6400880&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02423167v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467349659&rft.eisbn_list=1467349631&rft.eisbn_list=9781467349635&rft.eisbn_list=1467349658&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6400880&rfr_iscdi=true