Learning postures through an imitation game between a human and a robot
In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs po...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Boucenna, S. Delaherche, E. Chetouani, M. Gaussier, P. |
description | In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work. |
doi_str_mv | 10.1109/DevLrn.2012.6400880 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6400880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6400880</ieee_id><sourcerecordid>oai_HAL_hal_02423167v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-db2561450b23acb6fc59f05aa589978861ceaf9ffc3be69409548b3e34651b343</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxFdFsNZ-gl726iF1_2f3WKq2QsCLgrfwNt00K82mbDYVv72RVk_zmPkx8AahOSULSol5eHTHIoYFI5QtlCBEa3KBZibXVKicC6OkuUQTRhXNjMjVFbr9C8THDZr1_SchZGxSmpEJWhcOYvBhhw9dn4boepya2A27BkPAvvUJku8C3kHrsHXpy7mAATdDO8YQtuMdO9ulO3Rdw753s7NO0fvz09tqkxWv65fVssgqJk3KtpZJRYUklnGorKoraWoiAaQ24wta0cpBbeq64tYpI4iRQlvuuFCSWi74FN2fehvYl4foW4jfZQe-3CyL8tcjTDBOVX6kIzs_sd459w-fN-M_s0pdUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning postures through an imitation game between a human and a robot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Boucenna, S. ; Delaherche, E. ; Chetouani, M. ; Gaussier, P.</creator><creatorcontrib>Boucenna, S. ; Delaherche, E. ; Chetouani, M. ; Gaussier, P.</creatorcontrib><description>In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.</description><identifier>ISBN: 146734964X</identifier><identifier>ISBN: 9781467349642</identifier><identifier>EISSN: 2161-9476</identifier><identifier>EISBN: 9781467349659</identifier><identifier>EISBN: 1467349631</identifier><identifier>EISBN: 9781467349635</identifier><identifier>EISBN: 1467349658</identifier><identifier>DOI: 10.1109/DevLrn.2012.6400880</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Intelligence ; Cognitive science ; Computer Science ; Computer Vision and Pattern Recognition ; Education ; Face recognition ; Feature extraction ; Humans ; Neuroscience ; Psychology ; Robot sensing systems ; Robotics ; Signal and Image Processing ; Visualization</subject><ispartof>2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), 2012, p.1-2</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-db2561450b23acb6fc59f05aa589978861ceaf9ffc3be69409548b3e34651b343</citedby><orcidid>0000-0002-2920-4539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6400880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,885,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6400880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02423167$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boucenna, S.</creatorcontrib><creatorcontrib>Delaherche, E.</creatorcontrib><creatorcontrib>Chetouani, M.</creatorcontrib><creatorcontrib>Gaussier, P.</creatorcontrib><title>Learning postures through an imitation game between a human and a robot</title><title>2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL)</title><addtitle>DevLrn</addtitle><description>In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.</description><subject>Artificial Intelligence</subject><subject>Cognitive science</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Education</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Neuroscience</subject><subject>Psychology</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Signal and Image Processing</subject><subject>Visualization</subject><issn>2161-9476</issn><isbn>146734964X</isbn><isbn>9781467349642</isbn><isbn>9781467349659</isbn><isbn>1467349631</isbn><isbn>9781467349635</isbn><isbn>1467349658</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AUxFdFsNZ-gl726iF1_2f3WKq2QsCLgrfwNt00K82mbDYVv72RVk_zmPkx8AahOSULSol5eHTHIoYFI5QtlCBEa3KBZibXVKicC6OkuUQTRhXNjMjVFbr9C8THDZr1_SchZGxSmpEJWhcOYvBhhw9dn4boepya2A27BkPAvvUJku8C3kHrsHXpy7mAATdDO8YQtuMdO9ulO3Rdw753s7NO0fvz09tqkxWv65fVssgqJk3KtpZJRYUklnGorKoraWoiAaQ24wta0cpBbeq64tYpI4iRQlvuuFCSWi74FN2fehvYl4foW4jfZQe-3CyL8tcjTDBOVX6kIzs_sd459w-fN-M_s0pdUw</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Boucenna, S.</creator><creator>Delaherche, E.</creator><creator>Chetouani, M.</creator><creator>Gaussier, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2920-4539</orcidid></search><sort><creationdate>201211</creationdate><title>Learning postures through an imitation game between a human and a robot</title><author>Boucenna, S. ; Delaherche, E. ; Chetouani, M. ; Gaussier, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-db2561450b23acb6fc59f05aa589978861ceaf9ffc3be69409548b3e34651b343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Cognitive science</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Education</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Neuroscience</topic><topic>Psychology</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Signal and Image Processing</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Boucenna, S.</creatorcontrib><creatorcontrib>Delaherche, E.</creatorcontrib><creatorcontrib>Chetouani, M.</creatorcontrib><creatorcontrib>Gaussier, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boucenna, S.</au><au>Delaherche, E.</au><au>Chetouani, M.</au><au>Gaussier, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning postures through an imitation game between a human and a robot</atitle><btitle>2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL)</btitle><stitle>DevLrn</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><eissn>2161-9476</eissn><isbn>146734964X</isbn><isbn>9781467349642</isbn><eisbn>9781467349659</eisbn><eisbn>1467349631</eisbn><eisbn>9781467349635</eisbn><eisbn>1467349658</eisbn><abstract>In this paper, we investigate a sensory-motor architecture allowing a robot to learn to recognize postures. The learning is performed without a teaching signal that associates a specific posture with the robot's motor internal state. Our architecture assumes that the robot initially performs postures, then the human imitates them. An on-line learning scheme without an explicit reward or ad-hoc detection mechanism or a formatted teaching technique is proposed. Investigations on how a "naive" system can learn to imitate correctly another person's posture during a natural interaction motivate the current research work.</abstract><pub>IEEE</pub><doi>10.1109/DevLrn.2012.6400880</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0002-2920-4539</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 146734964X |
ispartof | 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL), 2012, p.1-2 |
issn | 2161-9476 |
language | eng |
recordid | cdi_ieee_primary_6400880 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial Intelligence Cognitive science Computer Science Computer Vision and Pattern Recognition Education Face recognition Feature extraction Humans Neuroscience Psychology Robot sensing systems Robotics Signal and Image Processing Visualization |
title | Learning postures through an imitation game between a human and a robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20postures%20through%20an%20imitation%20game%20between%20a%20human%20and%20a%20robot&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Development%20and%20Learning%20and%20Epigenetic%20Robotics%20(ICDL)&rft.au=Boucenna,%20S.&rft.date=2012-11&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.eissn=2161-9476&rft.isbn=146734964X&rft.isbn_list=9781467349642&rft_id=info:doi/10.1109/DevLrn.2012.6400880&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_02423167v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467349659&rft.eisbn_list=1467349631&rft.eisbn_list=9781467349635&rft.eisbn_list=1467349658&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6400880&rfr_iscdi=true |