Linear dynamic modelling and Bayesian forecasting of tumor evolution
We consider a linear dynamic model for tumor growth evolution. A number of temporal statistical models for tumor growth exist in the literature. In the majority of these cases the employed models are formulated in a deterministic context, providing no information on their uncertainty. Some of these...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 676 |
---|---|
container_issue | |
container_start_page | 671 |
container_title | |
container_volume | |
creator | Achilleos, A. Loizides, C. Stylianopoulos, T. Mitsis, G. |
description | We consider a linear dynamic model for tumor growth evolution. A number of temporal statistical models for tumor growth exist in the literature. In the majority of these cases the employed models are formulated in a deterministic context, providing no information on their uncertainty. Some of these are theoretically well defined and very useful in practice, e.g. to define general optimal treatment protocols through nonlinear constrained optimization. Nevertheless a challenging task is the estimation of the model parameters for a specific individual since, especially in humans, it is not feasible to collect a large number of tumor size values with respect to time, as the tumor is removed immediately after diagnosis in most cases. Therefore, we suggest a probabilistic model for personalized sequential tumor growth prediction, given only a few observed data and an a priori information regarding the average response to a specific type of cancer of the population to which the subject belongs. We validated the proposed model with experimental data from mice and the results are promising. |
doi_str_mv | 10.1109/BIBE.2012.6399747 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6399747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6399747</ieee_id><sourcerecordid>6399747</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8fea70cc3e9b7ddfb327ee8b3ac4efdac28665417f9cb5ecd5993e841180b8703</originalsourceid><addsrcrecordid>eNo1j8FKxDAURSMiqGM_QNzkB1qTJs1LlnYcdaDgRtdDmrxIpE2k7Qj9exHH1eVw4MAl5JazinNm7tt9u6tqxutKCWNAwhm55lKBkKLRcE4KA_qfob4kxTx_MsY4E1Ipc0Ueu5jQTtSvyY7R0TF7HIaYPqhNnrZ2xTnaREOe0Nl5-RU50OU45onidx6OS8zphlwEO8xYnHZD3p92b9uXsnt93m8fujJyaJZSB7TAnBNoevA-9KIGRN0L6yQGb12tlWokh2Bc36DzjTECteRcs14DExty99eNiHj4muJop_VwOi5-ALAYTUM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Linear dynamic modelling and Bayesian forecasting of tumor evolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Achilleos, A. ; Loizides, C. ; Stylianopoulos, T. ; Mitsis, G.</creator><creatorcontrib>Achilleos, A. ; Loizides, C. ; Stylianopoulos, T. ; Mitsis, G.</creatorcontrib><description>We consider a linear dynamic model for tumor growth evolution. A number of temporal statistical models for tumor growth exist in the literature. In the majority of these cases the employed models are formulated in a deterministic context, providing no information on their uncertainty. Some of these are theoretically well defined and very useful in practice, e.g. to define general optimal treatment protocols through nonlinear constrained optimization. Nevertheless a challenging task is the estimation of the model parameters for a specific individual since, especially in humans, it is not feasible to collect a large number of tumor size values with respect to time, as the tumor is removed immediately after diagnosis in most cases. Therefore, we suggest a probabilistic model for personalized sequential tumor growth prediction, given only a few observed data and an a priori information regarding the average response to a specific type of cancer of the population to which the subject belongs. We validated the proposed model with experimental data from mice and the results are promising.</description><identifier>ISBN: 9781467343572</identifier><identifier>ISBN: 1467343579</identifier><identifier>EISBN: 1467343587</identifier><identifier>EISBN: 9781467343565</identifier><identifier>EISBN: 1467343560</identifier><identifier>EISBN: 9781467343589</identifier><identifier>DOI: 10.1109/BIBE.2012.6399747</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Bayesian forecasting ; Cancer ; Forecasting ; Gompertz-law of growth ; Linear Dynamic Modeling ; Mice ; mouse xenograft model ; Personalized sequential tumor growth prediction ; Predictive models ; Tumors ; Uncertainty</subject><ispartof>2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012, p.671-676</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6399747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6399747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Achilleos, A.</creatorcontrib><creatorcontrib>Loizides, C.</creatorcontrib><creatorcontrib>Stylianopoulos, T.</creatorcontrib><creatorcontrib>Mitsis, G.</creatorcontrib><title>Linear dynamic modelling and Bayesian forecasting of tumor evolution</title><title>2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)</title><addtitle>BIBE</addtitle><description>We consider a linear dynamic model for tumor growth evolution. A number of temporal statistical models for tumor growth exist in the literature. In the majority of these cases the employed models are formulated in a deterministic context, providing no information on their uncertainty. Some of these are theoretically well defined and very useful in practice, e.g. to define general optimal treatment protocols through nonlinear constrained optimization. Nevertheless a challenging task is the estimation of the model parameters for a specific individual since, especially in humans, it is not feasible to collect a large number of tumor size values with respect to time, as the tumor is removed immediately after diagnosis in most cases. Therefore, we suggest a probabilistic model for personalized sequential tumor growth prediction, given only a few observed data and an a priori information regarding the average response to a specific type of cancer of the population to which the subject belongs. We validated the proposed model with experimental data from mice and the results are promising.</description><subject>Adaptation models</subject><subject>Bayesian forecasting</subject><subject>Cancer</subject><subject>Forecasting</subject><subject>Gompertz-law of growth</subject><subject>Linear Dynamic Modeling</subject><subject>Mice</subject><subject>mouse xenograft model</subject><subject>Personalized sequential tumor growth prediction</subject><subject>Predictive models</subject><subject>Tumors</subject><subject>Uncertainty</subject><isbn>9781467343572</isbn><isbn>1467343579</isbn><isbn>1467343587</isbn><isbn>9781467343565</isbn><isbn>1467343560</isbn><isbn>9781467343589</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8FKxDAURSMiqGM_QNzkB1qTJs1LlnYcdaDgRtdDmrxIpE2k7Qj9exHH1eVw4MAl5JazinNm7tt9u6tqxutKCWNAwhm55lKBkKLRcE4KA_qfob4kxTx_MsY4E1Ipc0Ueu5jQTtSvyY7R0TF7HIaYPqhNnrZ2xTnaREOe0Nl5-RU50OU45onidx6OS8zphlwEO8xYnHZD3p92b9uXsnt93m8fujJyaJZSB7TAnBNoevA-9KIGRN0L6yQGb12tlWokh2Bc36DzjTECteRcs14DExty99eNiHj4muJop_VwOi5-ALAYTUM</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Achilleos, A.</creator><creator>Loizides, C.</creator><creator>Stylianopoulos, T.</creator><creator>Mitsis, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Linear dynamic modelling and Bayesian forecasting of tumor evolution</title><author>Achilleos, A. ; Loizides, C. ; Stylianopoulos, T. ; Mitsis, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8fea70cc3e9b7ddfb327ee8b3ac4efdac28665417f9cb5ecd5993e841180b8703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Bayesian forecasting</topic><topic>Cancer</topic><topic>Forecasting</topic><topic>Gompertz-law of growth</topic><topic>Linear Dynamic Modeling</topic><topic>Mice</topic><topic>mouse xenograft model</topic><topic>Personalized sequential tumor growth prediction</topic><topic>Predictive models</topic><topic>Tumors</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Achilleos, A.</creatorcontrib><creatorcontrib>Loizides, C.</creatorcontrib><creatorcontrib>Stylianopoulos, T.</creatorcontrib><creatorcontrib>Mitsis, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Achilleos, A.</au><au>Loizides, C.</au><au>Stylianopoulos, T.</au><au>Mitsis, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Linear dynamic modelling and Bayesian forecasting of tumor evolution</atitle><btitle>2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)</btitle><stitle>BIBE</stitle><date>2012-11</date><risdate>2012</risdate><spage>671</spage><epage>676</epage><pages>671-676</pages><isbn>9781467343572</isbn><isbn>1467343579</isbn><eisbn>1467343587</eisbn><eisbn>9781467343565</eisbn><eisbn>1467343560</eisbn><eisbn>9781467343589</eisbn><abstract>We consider a linear dynamic model for tumor growth evolution. A number of temporal statistical models for tumor growth exist in the literature. In the majority of these cases the employed models are formulated in a deterministic context, providing no information on their uncertainty. Some of these are theoretically well defined and very useful in practice, e.g. to define general optimal treatment protocols through nonlinear constrained optimization. Nevertheless a challenging task is the estimation of the model parameters for a specific individual since, especially in humans, it is not feasible to collect a large number of tumor size values with respect to time, as the tumor is removed immediately after diagnosis in most cases. Therefore, we suggest a probabilistic model for personalized sequential tumor growth prediction, given only a few observed data and an a priori information regarding the average response to a specific type of cancer of the population to which the subject belongs. We validated the proposed model with experimental data from mice and the results are promising.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2012.6399747</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467343572 |
ispartof | 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012, p.671-676 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6399747 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Bayesian forecasting Cancer Forecasting Gompertz-law of growth Linear Dynamic Modeling Mice mouse xenograft model Personalized sequential tumor growth prediction Predictive models Tumors Uncertainty |
title | Linear dynamic modelling and Bayesian forecasting of tumor evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Linear%20dynamic%20modelling%20and%20Bayesian%20forecasting%20of%20tumor%20evolution&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Bioinformatics%20&%20Bioengineering%20(BIBE)&rft.au=Achilleos,%20A.&rft.date=2012-11&rft.spage=671&rft.epage=676&rft.pages=671-676&rft.isbn=9781467343572&rft.isbn_list=1467343579&rft_id=info:doi/10.1109/BIBE.2012.6399747&rft_dat=%3Cieee_6IE%3E6399747%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467343587&rft.eisbn_list=9781467343565&rft.eisbn_list=1467343560&rft.eisbn_list=9781467343589&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6399747&rfr_iscdi=true |