Biological interaction networks based on sparse temporal expansion of graphical models
Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are inte...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | |
container_start_page | 460 |
container_title | |
container_volume | |
creator | Kalantzaki, K. D. Bei, E. S. Garofalakis, M. Zervakis, M. |
description | Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters. |
doi_str_mv | 10.1109/BIBE.2012.6399721 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6399721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6399721</ieee_id><sourcerecordid>6399721</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-3039c7210d90a05833bc44a2b0088848c536ea4ee9f8de848a0ec69a8d3ab62a3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhFdEUGseQLzJC6Se_clm99KUWgsFb9TbcpKc1NUkG3YD6tsbtV4NM3wMwzB2zWHJOdjbcluulwK4WGppbSH4CbvkShdSydwUpyyxhfn3hThnSYxvAMBBKq3tBXspne_8wdXYpW6YKGA9OT-kA00fPrzHtMJITTonccQQKZ2oH32YafoccYg_rG_TQ8Dx9bek9w118YqdtdhFSo66YM_366fVQ7Z73GxXd7vMCW6mTIK09TwaGgsIuZGyqpVCUQEYY5Spc6kJFZFtTUNzgEC1tmgaiZUWKBfs5q_XEdF-DK7H8LU_XiG_AQwxUyE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biological interaction networks based on sparse temporal expansion of graphical models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kalantzaki, K. D. ; Bei, E. S. ; Garofalakis, M. ; Zervakis, M.</creator><creatorcontrib>Kalantzaki, K. D. ; Bei, E. S. ; Garofalakis, M. ; Zervakis, M.</creatorcontrib><description>Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.</description><identifier>ISBN: 9781467343572</identifier><identifier>ISBN: 1467343579</identifier><identifier>EISBN: 1467343587</identifier><identifier>EISBN: 9781467343565</identifier><identifier>EISBN: 1467343560</identifier><identifier>EISBN: 9781467343589</identifier><identifier>DOI: 10.1109/BIBE.2012.6399721</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arabidopsis thaliana ; Bioinformatics ; Correlation ; Estimation ; Gaussian Graphical Model ; Graphical models ; Kernel ; Kernel Estimation ; Network construction ; Proteins ; Sparse Temporal Expansion</subject><ispartof>2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012, p.460-465</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6399721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6399721$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalantzaki, K. D.</creatorcontrib><creatorcontrib>Bei, E. S.</creatorcontrib><creatorcontrib>Garofalakis, M.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><title>Biological interaction networks based on sparse temporal expansion of graphical models</title><title>2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)</title><addtitle>BIBE</addtitle><description>Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.</description><subject>Arabidopsis thaliana</subject><subject>Bioinformatics</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Gaussian Graphical Model</subject><subject>Graphical models</subject><subject>Kernel</subject><subject>Kernel Estimation</subject><subject>Network construction</subject><subject>Proteins</subject><subject>Sparse Temporal Expansion</subject><isbn>9781467343572</isbn><isbn>1467343579</isbn><isbn>1467343587</isbn><isbn>9781467343565</isbn><isbn>1467343560</isbn><isbn>9781467343589</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1Kw0AUhFdEUGseQLzJC6Se_clm99KUWgsFb9TbcpKc1NUkG3YD6tsbtV4NM3wMwzB2zWHJOdjbcluulwK4WGppbSH4CbvkShdSydwUpyyxhfn3hThnSYxvAMBBKq3tBXspne_8wdXYpW6YKGA9OT-kA00fPrzHtMJITTonccQQKZ2oH32YafoccYg_rG_TQ8Dx9bek9w118YqdtdhFSo66YM_366fVQ7Z73GxXd7vMCW6mTIK09TwaGgsIuZGyqpVCUQEYY5Spc6kJFZFtTUNzgEC1tmgaiZUWKBfs5q_XEdF-DK7H8LU_XiG_AQwxUyE</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Kalantzaki, K. D.</creator><creator>Bei, E. S.</creator><creator>Garofalakis, M.</creator><creator>Zervakis, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Biological interaction networks based on sparse temporal expansion of graphical models</title><author>Kalantzaki, K. D. ; Bei, E. S. ; Garofalakis, M. ; Zervakis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-3039c7210d90a05833bc44a2b0088848c536ea4ee9f8de848a0ec69a8d3ab62a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis thaliana</topic><topic>Bioinformatics</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Gaussian Graphical Model</topic><topic>Graphical models</topic><topic>Kernel</topic><topic>Kernel Estimation</topic><topic>Network construction</topic><topic>Proteins</topic><topic>Sparse Temporal Expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalantzaki, K. D.</creatorcontrib><creatorcontrib>Bei, E. S.</creatorcontrib><creatorcontrib>Garofalakis, M.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalantzaki, K. D.</au><au>Bei, E. S.</au><au>Garofalakis, M.</au><au>Zervakis, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biological interaction networks based on sparse temporal expansion of graphical models</atitle><btitle>2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE)</btitle><stitle>BIBE</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>460</spage><epage>465</epage><pages>460-465</pages><isbn>9781467343572</isbn><isbn>1467343579</isbn><eisbn>1467343587</eisbn><eisbn>9781467343565</eisbn><eisbn>1467343560</eisbn><eisbn>9781467343589</eisbn><abstract>Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2012.6399721</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467343572 |
ispartof | 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012, p.460-465 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6399721 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arabidopsis thaliana Bioinformatics Correlation Estimation Gaussian Graphical Model Graphical models Kernel Kernel Estimation Network construction Proteins Sparse Temporal Expansion |
title | Biological interaction networks based on sparse temporal expansion of graphical models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biological%20interaction%20networks%20based%20on%20sparse%20temporal%20expansion%20of%20graphical%20models&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Bioinformatics%20&%20Bioengineering%20(BIBE)&rft.au=Kalantzaki,%20K.%20D.&rft.date=2012-01-01&rft.spage=460&rft.epage=465&rft.pages=460-465&rft.isbn=9781467343572&rft.isbn_list=1467343579&rft_id=info:doi/10.1109/BIBE.2012.6399721&rft_dat=%3Cieee_6IE%3E6399721%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467343587&rft.eisbn_list=9781467343565&rft.eisbn_list=1467343560&rft.eisbn_list=9781467343589&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6399721&rfr_iscdi=true |