Biological interaction networks based on sparse temporal expansion of graphical models

Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalantzaki, K. D., Bei, E. S., Garofalakis, M., Zervakis, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue
container_start_page 460
container_title
container_volume
creator Kalantzaki, K. D.
Bei, E. S.
Garofalakis, M.
Zervakis, M.
description Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.
doi_str_mv 10.1109/BIBE.2012.6399721
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6399721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6399721</ieee_id><sourcerecordid>6399721</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-3039c7210d90a05833bc44a2b0088848c536ea4ee9f8de848a0ec69a8d3ab62a3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhFdEUGseQLzJC6Se_clm99KUWgsFb9TbcpKc1NUkG3YD6tsbtV4NM3wMwzB2zWHJOdjbcluulwK4WGppbSH4CbvkShdSydwUpyyxhfn3hThnSYxvAMBBKq3tBXspne_8wdXYpW6YKGA9OT-kA00fPrzHtMJITTonccQQKZ2oH32YafoccYg_rG_TQ8Dx9bek9w118YqdtdhFSo66YM_366fVQ7Z73GxXd7vMCW6mTIK09TwaGgsIuZGyqpVCUQEYY5Spc6kJFZFtTUNzgEC1tmgaiZUWKBfs5q_XEdF-DK7H8LU_XiG_AQwxUyE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Biological interaction networks based on sparse temporal expansion of graphical models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kalantzaki, K. D. ; Bei, E. S. ; Garofalakis, M. ; Zervakis, M.</creator><creatorcontrib>Kalantzaki, K. D. ; Bei, E. S. ; Garofalakis, M. ; Zervakis, M.</creatorcontrib><description>Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.</description><identifier>ISBN: 9781467343572</identifier><identifier>ISBN: 1467343579</identifier><identifier>EISBN: 1467343587</identifier><identifier>EISBN: 9781467343565</identifier><identifier>EISBN: 1467343560</identifier><identifier>EISBN: 9781467343589</identifier><identifier>DOI: 10.1109/BIBE.2012.6399721</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arabidopsis thaliana ; Bioinformatics ; Correlation ; Estimation ; Gaussian Graphical Model ; Graphical models ; Kernel ; Kernel Estimation ; Network construction ; Proteins ; Sparse Temporal Expansion</subject><ispartof>2012 IEEE 12th International Conference on Bioinformatics &amp; Bioengineering (BIBE), 2012, p.460-465</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6399721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6399721$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalantzaki, K. D.</creatorcontrib><creatorcontrib>Bei, E. S.</creatorcontrib><creatorcontrib>Garofalakis, M.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><title>Biological interaction networks based on sparse temporal expansion of graphical models</title><title>2012 IEEE 12th International Conference on Bioinformatics &amp; Bioengineering (BIBE)</title><addtitle>BIBE</addtitle><description>Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.</description><subject>Arabidopsis thaliana</subject><subject>Bioinformatics</subject><subject>Correlation</subject><subject>Estimation</subject><subject>Gaussian Graphical Model</subject><subject>Graphical models</subject><subject>Kernel</subject><subject>Kernel Estimation</subject><subject>Network construction</subject><subject>Proteins</subject><subject>Sparse Temporal Expansion</subject><isbn>9781467343572</isbn><isbn>1467343579</isbn><isbn>1467343587</isbn><isbn>9781467343565</isbn><isbn>1467343560</isbn><isbn>9781467343589</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1Kw0AUhFdEUGseQLzJC6Se_clm99KUWgsFb9TbcpKc1NUkG3YD6tsbtV4NM3wMwzB2zWHJOdjbcluulwK4WGppbSH4CbvkShdSydwUpyyxhfn3hThnSYxvAMBBKq3tBXspne_8wdXYpW6YKGA9OT-kA00fPrzHtMJITTonccQQKZ2oH32YafoccYg_rG_TQ8Dx9bek9w118YqdtdhFSo66YM_366fVQ7Z73GxXd7vMCW6mTIK09TwaGgsIuZGyqpVCUQEYY5Spc6kJFZFtTUNzgEC1tmgaiZUWKBfs5q_XEdF-DK7H8LU_XiG_AQwxUyE</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Kalantzaki, K. D.</creator><creator>Bei, E. S.</creator><creator>Garofalakis, M.</creator><creator>Zervakis, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20120101</creationdate><title>Biological interaction networks based on sparse temporal expansion of graphical models</title><author>Kalantzaki, K. D. ; Bei, E. S. ; Garofalakis, M. ; Zervakis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-3039c7210d90a05833bc44a2b0088848c536ea4ee9f8de848a0ec69a8d3ab62a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arabidopsis thaliana</topic><topic>Bioinformatics</topic><topic>Correlation</topic><topic>Estimation</topic><topic>Gaussian Graphical Model</topic><topic>Graphical models</topic><topic>Kernel</topic><topic>Kernel Estimation</topic><topic>Network construction</topic><topic>Proteins</topic><topic>Sparse Temporal Expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Kalantzaki, K. D.</creatorcontrib><creatorcontrib>Bei, E. S.</creatorcontrib><creatorcontrib>Garofalakis, M.</creatorcontrib><creatorcontrib>Zervakis, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalantzaki, K. D.</au><au>Bei, E. S.</au><au>Garofalakis, M.</au><au>Zervakis, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Biological interaction networks based on sparse temporal expansion of graphical models</atitle><btitle>2012 IEEE 12th International Conference on Bioinformatics &amp; Bioengineering (BIBE)</btitle><stitle>BIBE</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>460</spage><epage>465</epage><pages>460-465</pages><isbn>9781467343572</isbn><isbn>1467343579</isbn><eisbn>1467343587</eisbn><eisbn>9781467343565</eisbn><eisbn>1467343560</eisbn><eisbn>9781467343589</eisbn><abstract>Biological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technology allow the monitoring of expression levels over thousands of biological units over time. In experimental efforts we are interested in unveiling pairwise interactions. Many graphical models have been introduced in order to discover associations from the expression data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study we generate gene-protein networks from sparse experimental data using two methods, partial correlations and Kernel Density Estimation, in order to capture genetic interactions. Dynamic Gaussian analysis is used to match special characteristics to genes and proteins at different time stages utilizing the KDE method for expressing Gaussian associations with non-linear parameters.</abstract><pub>IEEE</pub><doi>10.1109/BIBE.2012.6399721</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467343572
ispartof 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012, p.460-465
issn
language eng
recordid cdi_ieee_primary_6399721
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arabidopsis thaliana
Bioinformatics
Correlation
Estimation
Gaussian Graphical Model
Graphical models
Kernel
Kernel Estimation
Network construction
Proteins
Sparse Temporal Expansion
title Biological interaction networks based on sparse temporal expansion of graphical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Biological%20interaction%20networks%20based%20on%20sparse%20temporal%20expansion%20of%20graphical%20models&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Bioinformatics%20&%20Bioengineering%20(BIBE)&rft.au=Kalantzaki,%20K.%20D.&rft.date=2012-01-01&rft.spage=460&rft.epage=465&rft.pages=460-465&rft.isbn=9781467343572&rft.isbn_list=1467343579&rft_id=info:doi/10.1109/BIBE.2012.6399721&rft_dat=%3Cieee_6IE%3E6399721%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467343587&rft.eisbn_list=9781467343565&rft.eisbn_list=1467343560&rft.eisbn_list=9781467343589&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6399721&rfr_iscdi=true