Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID

A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1601904-1601904
Hauptverfasser: Sakai, K., Saari, M. M., Kiwa, T., Tsukada, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1601904
container_issue 3
container_start_page 1601904
container_title IEEE transactions on applied superconductivity
container_volume 23
creator Sakai, K.
Saari, M. M.
Kiwa, T.
Tsukada, K.
description A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.
doi_str_mv 10.1109/TASC.2012.2234324
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6399566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6399566</ieee_id><sourcerecordid>27529928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</originalsourceid><addsrcrecordid>eNo9kDtPw0AQhE8IJELgByAaN5QOt_fwo4zMI5ESAXHS0Fir8zoY-aU7I8G_56KgVDujmdniY-wW-AyApw_beZ7NBAcxE0IqKdQZm4DWSSg06HOvuYYw8dklu3Lui3NQidIT9pH17YBmDDb9iGPd7cMc26GhYI37jsa-pZFsUPU22FCDP77Sd8HbJ3U-6bxcE7pvS96Mwc75fbDY5mH-vls-XrOLChtHN_93ynbPT9tsEa5eX5bZfBUaGcEYJkoZKBWklRARVKAM16IsDTeGl7FO0XiDSDIRXPFYSq21MUCxQMEJuZwyOP41tnfOUlUMtm7R_hbAiwOc4gCnOMAp_uH4zf1xM6Az2FQWO1O701DEWqSpSHzv7tiriegURzJNdRTJP3okbbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</title><source>IEEE Electronic Library (IEL)</source><creator>Sakai, K. ; Saari, M. M. ; Kiwa, T. ; Tsukada, K.</creator><creatorcontrib>Sakai, K. ; Saari, M. M. ; Kiwa, T. ; Tsukada, K.</creatorcontrib><description>A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2234324</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coils ; Delay effects ; Diamagnetism ; Electronics ; Exact sciences and technology ; HTS-SQUID ; Magnetic noise ; magnetic relaxation ; Magnetic shielding ; Magnetic susceptibility ; magnetometer ; Magnetometers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting devices ; Superconducting magnets</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601904-1601904</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</citedby><cites>FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6399566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23935,23936,25145,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6399566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27529928$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakai, K.</creatorcontrib><creatorcontrib>Saari, M. M.</creatorcontrib><creatorcontrib>Kiwa, T.</creatorcontrib><creatorcontrib>Tsukada, K.</creatorcontrib><title>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.</description><subject>Applied sciences</subject><subject>Coils</subject><subject>Delay effects</subject><subject>Diamagnetism</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>HTS-SQUID</subject><subject>Magnetic noise</subject><subject>magnetic relaxation</subject><subject>Magnetic shielding</subject><subject>Magnetic susceptibility</subject><subject>magnetometer</subject><subject>Magnetometers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting devices</subject><subject>Superconducting magnets</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPw0AQhE8IJELgByAaN5QOt_fwo4zMI5ESAXHS0Fir8zoY-aU7I8G_56KgVDujmdniY-wW-AyApw_beZ7NBAcxE0IqKdQZm4DWSSg06HOvuYYw8dklu3Lui3NQidIT9pH17YBmDDb9iGPd7cMc26GhYI37jsa-pZFsUPU22FCDP77Sd8HbJ3U-6bxcE7pvS96Mwc75fbDY5mH-vls-XrOLChtHN_93ynbPT9tsEa5eX5bZfBUaGcEYJkoZKBWklRARVKAM16IsDTeGl7FO0XiDSDIRXPFYSq21MUCxQMEJuZwyOP41tnfOUlUMtm7R_hbAiwOc4gCnOMAp_uH4zf1xM6Az2FQWO1O701DEWqSpSHzv7tiriegURzJNdRTJP3okbbI</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sakai, K.</creator><creator>Saari, M. M.</creator><creator>Kiwa, T.</creator><creator>Tsukada, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</title><author>Sakai, K. ; Saari, M. M. ; Kiwa, T. ; Tsukada, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Coils</topic><topic>Delay effects</topic><topic>Diamagnetism</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>HTS-SQUID</topic><topic>Magnetic noise</topic><topic>magnetic relaxation</topic><topic>Magnetic shielding</topic><topic>Magnetic susceptibility</topic><topic>magnetometer</topic><topic>Magnetometers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting devices</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakai, K.</creatorcontrib><creatorcontrib>Saari, M. M.</creatorcontrib><creatorcontrib>Kiwa, T.</creatorcontrib><creatorcontrib>Tsukada, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sakai, K.</au><au>Saari, M. M.</au><au>Kiwa, T.</au><au>Tsukada, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>1601904</spage><epage>1601904</epage><pages>1601904-1601904</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2234324</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601904-1601904
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_6399566
source IEEE Electronic Library (IEL)
subjects Applied sciences
Coils
Delay effects
Diamagnetism
Electronics
Exact sciences and technology
HTS-SQUID
Magnetic noise
magnetic relaxation
Magnetic shielding
Magnetic susceptibility
magnetometer
Magnetometers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Superconducting devices
Superconducting magnets
title Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Rotating-Sample%20Magnetometer%20for%20Relaxation%20Phenomenon%20Measurement%20Using%20HTS-SQUID&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Sakai,%20K.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=1601904&rft.epage=1601904&rft.pages=1601904-1601904&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2234324&rft_dat=%3Cpascalfrancis_RIE%3E27529928%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6399566&rfr_iscdi=true