Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID
A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any po...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1601904-1601904 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1601904 |
---|---|
container_issue | 3 |
container_start_page | 1601904 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 23 |
creator | Sakai, K. Saari, M. M. Kiwa, T. Tsukada, K. |
description | A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process. |
doi_str_mv | 10.1109/TASC.2012.2234324 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6399566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6399566</ieee_id><sourcerecordid>27529928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</originalsourceid><addsrcrecordid>eNo9kDtPw0AQhE8IJELgByAaN5QOt_fwo4zMI5ESAXHS0Fir8zoY-aU7I8G_56KgVDujmdniY-wW-AyApw_beZ7NBAcxE0IqKdQZm4DWSSg06HOvuYYw8dklu3Lui3NQidIT9pH17YBmDDb9iGPd7cMc26GhYI37jsa-pZFsUPU22FCDP77Sd8HbJ3U-6bxcE7pvS96Mwc75fbDY5mH-vls-XrOLChtHN_93ynbPT9tsEa5eX5bZfBUaGcEYJkoZKBWklRARVKAM16IsDTeGl7FO0XiDSDIRXPFYSq21MUCxQMEJuZwyOP41tnfOUlUMtm7R_hbAiwOc4gCnOMAp_uH4zf1xM6Az2FQWO1O701DEWqSpSHzv7tiriegURzJNdRTJP3okbbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</title><source>IEEE Electronic Library (IEL)</source><creator>Sakai, K. ; Saari, M. M. ; Kiwa, T. ; Tsukada, K.</creator><creatorcontrib>Sakai, K. ; Saari, M. M. ; Kiwa, T. ; Tsukada, K.</creatorcontrib><description>A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2012.2234324</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coils ; Delay effects ; Diamagnetism ; Electronics ; Exact sciences and technology ; HTS-SQUID ; Magnetic noise ; magnetic relaxation ; Magnetic shielding ; Magnetic susceptibility ; magnetometer ; Magnetometers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting devices ; Superconducting magnets</subject><ispartof>IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601904-1601904</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</citedby><cites>FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6399566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,23935,23936,25145,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6399566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27529928$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakai, K.</creatorcontrib><creatorcontrib>Saari, M. M.</creatorcontrib><creatorcontrib>Kiwa, T.</creatorcontrib><creatorcontrib>Tsukada, K.</creatorcontrib><title>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.</description><subject>Applied sciences</subject><subject>Coils</subject><subject>Delay effects</subject><subject>Diamagnetism</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>HTS-SQUID</subject><subject>Magnetic noise</subject><subject>magnetic relaxation</subject><subject>Magnetic shielding</subject><subject>Magnetic susceptibility</subject><subject>magnetometer</subject><subject>Magnetometers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting devices</subject><subject>Superconducting magnets</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPw0AQhE8IJELgByAaN5QOt_fwo4zMI5ESAXHS0Fir8zoY-aU7I8G_56KgVDujmdniY-wW-AyApw_beZ7NBAcxE0IqKdQZm4DWSSg06HOvuYYw8dklu3Lui3NQidIT9pH17YBmDDb9iGPd7cMc26GhYI37jsa-pZFsUPU22FCDP77Sd8HbJ3U-6bxcE7pvS96Mwc75fbDY5mH-vls-XrOLChtHN_93ynbPT9tsEa5eX5bZfBUaGcEYJkoZKBWklRARVKAM16IsDTeGl7FO0XiDSDIRXPFYSq21MUCxQMEJuZwyOP41tnfOUlUMtm7R_hbAiwOc4gCnOMAp_uH4zf1xM6Az2FQWO1O701DEWqSpSHzv7tiriegURzJNdRTJP3okbbI</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Sakai, K.</creator><creator>Saari, M. M.</creator><creator>Kiwa, T.</creator><creator>Tsukada, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</title><author>Sakai, K. ; Saari, M. M. ; Kiwa, T. ; Tsukada, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-844c1d419f2261f14c052ddc0cc0d759acddcaae382040733555cc1e72a20ea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Coils</topic><topic>Delay effects</topic><topic>Diamagnetism</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>HTS-SQUID</topic><topic>Magnetic noise</topic><topic>magnetic relaxation</topic><topic>Magnetic shielding</topic><topic>Magnetic susceptibility</topic><topic>magnetometer</topic><topic>Magnetometers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting devices</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakai, K.</creatorcontrib><creatorcontrib>Saari, M. M.</creatorcontrib><creatorcontrib>Kiwa, T.</creatorcontrib><creatorcontrib>Tsukada, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sakai, K.</au><au>Saari, M. M.</au><au>Kiwa, T.</au><au>Tsukada, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>1601904</spage><epage>1601904</epage><pages>1601904-1601904</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A compact magnetometer that uses a high-temperature superconductor superconducting quantum interference device (HTS-SQUID) that can measure relaxation phenomena was developed, and its characteristics were evaluated. For measuring magnetic relaxation, a pick-up coil was designed to be fixed at any position in the circle described by a rotating-sample. The pick-up coil was directly connected to an input coil, which is inductively connected to the HTS-SQUID, and the secondary induced magnetic field from the sample was detected with time delay after magnetization. Using the developed system, magnetic signals with time delay from pure water were detected, and the magnetic signal intensity decreased with increasing time delay. This magnetic signal with time delay was not caused by the sample case and the magnetization due to the leaked magnetic field distribution of the permanent magnet used for sample magnetization. Thus, the developed system could detect magnetic signals during the magnetic relaxation process.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2012.2234324</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2013-06, Vol.23 (3), p.1601904-1601904 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_6399566 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coils Delay effects Diamagnetism Electronics Exact sciences and technology HTS-SQUID Magnetic noise magnetic relaxation Magnetic shielding Magnetic susceptibility magnetometer Magnetometers Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Superconducting devices Superconducting magnets |
title | Compact Rotating-Sample Magnetometer for Relaxation Phenomenon Measurement Using HTS-SQUID |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Rotating-Sample%20Magnetometer%20for%20Relaxation%20Phenomenon%20Measurement%20Using%20HTS-SQUID&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Sakai,%20K.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=1601904&rft.epage=1601904&rft.pages=1601904-1601904&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2012.2234324&rft_dat=%3Cpascalfrancis_RIE%3E27529928%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6399566&rfr_iscdi=true |