Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution

We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue
container_start_page 218
container_title
container_volume
creator Charfi, I.
Miteran, J.
Dubois, J.
Atri, M.
Tourki, R.
description We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. The features are based on height and width of human body bounding box, the user's trajectory with her/his orientation, Projection Histograms and moments of order 0, 1 and 2. We study several combinations of usual transformations of the features (Fourier Transform, Wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using a single camera.We evaluated the robustness of our method using a realistic dataset. Experiments show that the best tradeoff between classification performance and time processing result is obtained combining the original data with their first derivative. The global error rate is lower than 1%, and the recall, specificity and precision are high (respectively 0.98, 0.996 and 0.942). The resulting system can therefore be used in a real environment. Hence, we also evaluated the robustness of our system regarding location changes. We proposed a realistic and pragmatic protocol which enables performance to be improved by updating the training in the current location, with normal activities records.
doi_str_mv 10.1109/SITIS.2012.155
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6395098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6395098</ieee_id><sourcerecordid>6395098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-f7c318c0e1b6e9a2b2c08646b61487b53ed5e655139be2f4446e4abcb8773f913</originalsourceid><addsrcrecordid>eNotjEtLAzEURiMiqHW2btzkD7Tem3eW2ocWKopT3ZYkvYGR6YzMQ_Dfi9XVd-AcPsauEWaI4G_L9XZdzgSgmKHWJ6zw1oE1XiuP6E7ZJSpjpUYt4JwVff8BAAhSg1EXrFxQrppqqNqGh2bPX6jLbXcITSK-_Ar1GI6qzTzw1zaO_cDL9yd-H3ra81Woa76ggdIxKtt6_IUrdpZD3VPxvxP2tlpu54_TzfPDen63mSYhYJhmmyS6BITRkA8iigTOKBMNKmejlrTXZLRG6SOJrJQypEJM0Vkrs0c5YTd_vxUR7T676hC6752RXoN38gdewU_h</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Charfi, I. ; Miteran, J. ; Dubois, J. ; Atri, M. ; Tourki, R.</creator><creatorcontrib>Charfi, I. ; Miteran, J. ; Dubois, J. ; Atri, M. ; Tourki, R.</creatorcontrib><description>We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. The features are based on height and width of human body bounding box, the user's trajectory with her/his orientation, Projection Histograms and moments of order 0, 1 and 2. We study several combinations of usual transformations of the features (Fourier Transform, Wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using a single camera.We evaluated the robustness of our method using a realistic dataset. Experiments show that the best tradeoff between classification performance and time processing result is obtained combining the original data with their first derivative. The global error rate is lower than 1%, and the recall, specificity and precision are high (respectively 0.98, 0.996 and 0.942). The resulting system can therefore be used in a real environment. Hence, we also evaluated the robustness of our system regarding location changes. We proposed a realistic and pragmatic protocol which enables performance to be improved by updating the training in the current location, with normal activities records.</description><identifier>ISBN: 1467351520</identifier><identifier>ISBN: 9781467351522</identifier><identifier>EISBN: 9780769549118</identifier><identifier>EISBN: 076954911X</identifier><identifier>DOI: 10.1109/SITIS.2012.155</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Error analysis ; Feature extraction ; Protocols ; Robustness ; Support vector machines ; Training</subject><ispartof>2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, 2012, p.218-224</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-f7c318c0e1b6e9a2b2c08646b61487b53ed5e655139be2f4446e4abcb8773f913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6395098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6395098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Charfi, I.</creatorcontrib><creatorcontrib>Miteran, J.</creatorcontrib><creatorcontrib>Dubois, J.</creatorcontrib><creatorcontrib>Atri, M.</creatorcontrib><creatorcontrib>Tourki, R.</creatorcontrib><title>Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution</title><title>2012 Eighth International Conference on Signal Image Technology and Internet Based Systems</title><addtitle>sitis</addtitle><description>We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. The features are based on height and width of human body bounding box, the user's trajectory with her/his orientation, Projection Histograms and moments of order 0, 1 and 2. We study several combinations of usual transformations of the features (Fourier Transform, Wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using a single camera.We evaluated the robustness of our method using a realistic dataset. Experiments show that the best tradeoff between classification performance and time processing result is obtained combining the original data with their first derivative. The global error rate is lower than 1%, and the recall, specificity and precision are high (respectively 0.98, 0.996 and 0.942). The resulting system can therefore be used in a real environment. Hence, we also evaluated the robustness of our system regarding location changes. We proposed a realistic and pragmatic protocol which enables performance to be improved by updating the training in the current location, with normal activities records.</description><subject>Cameras</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Protocols</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>Training</subject><isbn>1467351520</isbn><isbn>9781467351522</isbn><isbn>9780769549118</isbn><isbn>076954911X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjEtLAzEURiMiqHW2btzkD7Tem3eW2ocWKopT3ZYkvYGR6YzMQ_Dfi9XVd-AcPsauEWaI4G_L9XZdzgSgmKHWJ6zw1oE1XiuP6E7ZJSpjpUYt4JwVff8BAAhSg1EXrFxQrppqqNqGh2bPX6jLbXcITSK-_Ar1GI6qzTzw1zaO_cDL9yd-H3ra81Woa76ggdIxKtt6_IUrdpZD3VPxvxP2tlpu54_TzfPDen63mSYhYJhmmyS6BITRkA8iigTOKBMNKmejlrTXZLRG6SOJrJQypEJM0Vkrs0c5YTd_vxUR7T676hC6752RXoN38gdewU_h</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Charfi, I.</creator><creator>Miteran, J.</creator><creator>Dubois, J.</creator><creator>Atri, M.</creator><creator>Tourki, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution</title><author>Charfi, I. ; Miteran, J. ; Dubois, J. ; Atri, M. ; Tourki, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-f7c318c0e1b6e9a2b2c08646b61487b53ed5e655139be2f4446e4abcb8773f913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cameras</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Protocols</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Charfi, I.</creatorcontrib><creatorcontrib>Miteran, J.</creatorcontrib><creatorcontrib>Dubois, J.</creatorcontrib><creatorcontrib>Atri, M.</creatorcontrib><creatorcontrib>Tourki, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Charfi, I.</au><au>Miteran, J.</au><au>Dubois, J.</au><au>Atri, M.</au><au>Tourki, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution</atitle><btitle>2012 Eighth International Conference on Signal Image Technology and Internet Based Systems</btitle><stitle>sitis</stitle><date>2012-11</date><risdate>2012</risdate><spage>218</spage><epage>224</epage><pages>218-224</pages><isbn>1467351520</isbn><isbn>9781467351522</isbn><eisbn>9780769549118</eisbn><eisbn>076954911X</eisbn><coden>IEEPAD</coden><abstract>We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. The features are based on height and width of human body bounding box, the user's trajectory with her/his orientation, Projection Histograms and moments of order 0, 1 and 2. We study several combinations of usual transformations of the features (Fourier Transform, Wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using a single camera.We evaluated the robustness of our method using a realistic dataset. Experiments show that the best tradeoff between classification performance and time processing result is obtained combining the original data with their first derivative. The global error rate is lower than 1%, and the recall, specificity and precision are high (respectively 0.98, 0.996 and 0.942). The resulting system can therefore be used in a real environment. Hence, we also evaluated the robustness of our system regarding location changes. We proposed a realistic and pragmatic protocol which enables performance to be improved by updating the training in the current location, with normal activities records.</abstract><pub>IEEE</pub><doi>10.1109/SITIS.2012.155</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467351520
ispartof 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, 2012, p.218-224
issn
language eng
recordid cdi_ieee_primary_6395098
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Error analysis
Feature extraction
Protocols
Robustness
Support vector machines
Training
title Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Definition%20and%20Performance%20Evaluation%20of%20a%20Robust%20SVM%20Based%20Fall%20Detection%20Solution&rft.btitle=2012%20Eighth%20International%20Conference%20on%20Signal%20Image%20Technology%20and%20Internet%20Based%20Systems&rft.au=Charfi,%20I.&rft.date=2012-11&rft.spage=218&rft.epage=224&rft.pages=218-224&rft.isbn=1467351520&rft.isbn_list=9781467351522&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SITIS.2012.155&rft_dat=%3Cieee_6IE%3E6395098%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769549118&rft.eisbn_list=076954911X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6395098&rfr_iscdi=true