Definition and Performance Evaluation of a Robust SVM Based Fall Detection Solution

We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an automatic approach to detect falls in home environment. A Support Vector Machine based classifier is fed by a set of selected features extracted from human body silhouette tracking. The classifier is followed by filtering operations taking into account the temporal nature of a video. The features are based on height and width of human body bounding box, the user's trajectory with her/his orientation, Projection Histograms and moments of order 0, 1 and 2. We study several combinations of usual transformations of the features (Fourier Transform, Wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using a single camera.We evaluated the robustness of our method using a realistic dataset. Experiments show that the best tradeoff between classification performance and time processing result is obtained combining the original data with their first derivative. The global error rate is lower than 1%, and the recall, specificity and precision are high (respectively 0.98, 0.996 and 0.942). The resulting system can therefore be used in a real environment. Hence, we also evaluated the robustness of our system regarding location changes. We proposed a realistic and pragmatic protocol which enables performance to be improved by updating the training in the current location, with normal activities records.
DOI:10.1109/SITIS.2012.155