The Research on Dynamic Risk Assessment Based on Hidden Markov Models

In order to effectively finish the dynamic risk assessment of the electricity system, this paper will divide each attack into three distinct phases, The difficulty of attack is assessed by percent of each attack time of distinct stages take up in the total attack time to describe the attack difficul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaorong Cheng, Yangdan Ni
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1109
container_issue
container_start_page 1106
container_title
container_volume
creator Xiaorong Cheng
Yangdan Ni
description In order to effectively finish the dynamic risk assessment of the electricity system, this paper will divide each attack into three distinct phases, The difficulty of attack is assessed by percent of each attack time of distinct stages take up in the total attack time to describe the attack difficulty in order to determine the status of the assets transition matrix, realising the dynamic nature of risk assessment. The real-time dynamic risk assessment methods based on Hidden Markov Model HMM has a strong adaptability and scalability, it can be effectively applied on the network, host, system, service level of risk assessment. This paper designs and implements the dynamic risk assessment examples power system, and then demonstrateds the dynamic assessment model.
doi_str_mv 10.1109/CSSS.2012.280
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6394518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6394518</ieee_id><sourcerecordid>6394518</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-edc32218bba902f6d267201b334b2b13dd3a2e4f1b6ddc43a4a536ee48f327a03</originalsourceid><addsrcrecordid>eNotjktLw0AUhUdEUGqWrtzMH0i888g8ljXWVmgRmuzLTOaGjm0SyRSh_976WB0OfOfjEPLAoGAM7FNV13XBgfGCG7gimdUGtLKl1MzC9W9nUmkBmrPylmQpfQDAZaq04Xdk0eyRbjGhm9o9HQf6ch5cH1u6jelA5ylhSj0OJ_rsEoYfYBVDwIFu3HQYv-hmDHhM9-Smc8eE2X_OSPO6aKpVvn5fvlXzdR4tnHIMreCcGe-dBd6pwJW-PPdCSM89EyEIx1F2zKsQWimcdKVQiNJ0gmsHYkYe_7QREXefU-zddN4pYWXJjPgGZMpLAw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Research on Dynamic Risk Assessment Based on Hidden Markov Models</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaorong Cheng ; Yangdan Ni</creator><creatorcontrib>Xiaorong Cheng ; Yangdan Ni</creatorcontrib><description>In order to effectively finish the dynamic risk assessment of the electricity system, this paper will divide each attack into three distinct phases, The difficulty of attack is assessed by percent of each attack time of distinct stages take up in the total attack time to describe the attack difficulty in order to determine the status of the assets transition matrix, realising the dynamic nature of risk assessment. The real-time dynamic risk assessment methods based on Hidden Markov Model HMM has a strong adaptability and scalability, it can be effectively applied on the network, host, system, service level of risk assessment. This paper designs and implements the dynamic risk assessment examples power system, and then demonstrateds the dynamic assessment model.</description><identifier>ISBN: 9781467307215</identifier><identifier>ISBN: 1467307211</identifier><identifier>EISBN: 9780769547190</identifier><identifier>EISBN: 0769547192</identifier><identifier>DOI: 10.1109/CSSS.2012.280</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>data integration ; dynamic risk assessment ; Heuristic algorithms ; Hidden Markov ; Hidden Markov models ; Markov processes ; neural networks ; Power system dynamics ; Risk management ; Security ; Vectors</subject><ispartof>2012 International Conference on Computer Science and Service System, 2012, p.1106-1109</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6394518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6394518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaorong Cheng</creatorcontrib><creatorcontrib>Yangdan Ni</creatorcontrib><title>The Research on Dynamic Risk Assessment Based on Hidden Markov Models</title><title>2012 International Conference on Computer Science and Service System</title><addtitle>csss</addtitle><description>In order to effectively finish the dynamic risk assessment of the electricity system, this paper will divide each attack into three distinct phases, The difficulty of attack is assessed by percent of each attack time of distinct stages take up in the total attack time to describe the attack difficulty in order to determine the status of the assets transition matrix, realising the dynamic nature of risk assessment. The real-time dynamic risk assessment methods based on Hidden Markov Model HMM has a strong adaptability and scalability, it can be effectively applied on the network, host, system, service level of risk assessment. This paper designs and implements the dynamic risk assessment examples power system, and then demonstrateds the dynamic assessment model.</description><subject>data integration</subject><subject>dynamic risk assessment</subject><subject>Heuristic algorithms</subject><subject>Hidden Markov</subject><subject>Hidden Markov models</subject><subject>Markov processes</subject><subject>neural networks</subject><subject>Power system dynamics</subject><subject>Risk management</subject><subject>Security</subject><subject>Vectors</subject><isbn>9781467307215</isbn><isbn>1467307211</isbn><isbn>9780769547190</isbn><isbn>0769547192</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjktLw0AUhUdEUGqWrtzMH0i888g8ljXWVmgRmuzLTOaGjm0SyRSh_976WB0OfOfjEPLAoGAM7FNV13XBgfGCG7gimdUGtLKl1MzC9W9nUmkBmrPylmQpfQDAZaq04Xdk0eyRbjGhm9o9HQf6ch5cH1u6jelA5ylhSj0OJ_rsEoYfYBVDwIFu3HQYv-hmDHhM9-Smc8eE2X_OSPO6aKpVvn5fvlXzdR4tnHIMreCcGe-dBd6pwJW-PPdCSM89EyEIx1F2zKsQWimcdKVQiNJ0gmsHYkYe_7QREXefU-zddN4pYWXJjPgGZMpLAw</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Xiaorong Cheng</creator><creator>Yangdan Ni</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>The Research on Dynamic Risk Assessment Based on Hidden Markov Models</title><author>Xiaorong Cheng ; Yangdan Ni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-edc32218bba902f6d267201b334b2b13dd3a2e4f1b6ddc43a4a536ee48f327a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>data integration</topic><topic>dynamic risk assessment</topic><topic>Heuristic algorithms</topic><topic>Hidden Markov</topic><topic>Hidden Markov models</topic><topic>Markov processes</topic><topic>neural networks</topic><topic>Power system dynamics</topic><topic>Risk management</topic><topic>Security</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaorong Cheng</creatorcontrib><creatorcontrib>Yangdan Ni</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaorong Cheng</au><au>Yangdan Ni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Research on Dynamic Risk Assessment Based on Hidden Markov Models</atitle><btitle>2012 International Conference on Computer Science and Service System</btitle><stitle>csss</stitle><date>2012-08</date><risdate>2012</risdate><spage>1106</spage><epage>1109</epage><pages>1106-1109</pages><isbn>9781467307215</isbn><isbn>1467307211</isbn><eisbn>9780769547190</eisbn><eisbn>0769547192</eisbn><coden>IEEPAD</coden><abstract>In order to effectively finish the dynamic risk assessment of the electricity system, this paper will divide each attack into three distinct phases, The difficulty of attack is assessed by percent of each attack time of distinct stages take up in the total attack time to describe the attack difficulty in order to determine the status of the assets transition matrix, realising the dynamic nature of risk assessment. The real-time dynamic risk assessment methods based on Hidden Markov Model HMM has a strong adaptability and scalability, it can be effectively applied on the network, host, system, service level of risk assessment. This paper designs and implements the dynamic risk assessment examples power system, and then demonstrateds the dynamic assessment model.</abstract><pub>IEEE</pub><doi>10.1109/CSSS.2012.280</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467307215
ispartof 2012 International Conference on Computer Science and Service System, 2012, p.1106-1109
issn
language eng
recordid cdi_ieee_primary_6394518
source IEEE Electronic Library (IEL) Conference Proceedings
subjects data integration
dynamic risk assessment
Heuristic algorithms
Hidden Markov
Hidden Markov models
Markov processes
neural networks
Power system dynamics
Risk management
Security
Vectors
title The Research on Dynamic Risk Assessment Based on Hidden Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Research%20on%20Dynamic%20Risk%20Assessment%20Based%20on%20Hidden%20Markov%20Models&rft.btitle=2012%20International%20Conference%20on%20Computer%20Science%20and%20Service%20System&rft.au=Xiaorong%20Cheng&rft.date=2012-08&rft.spage=1106&rft.epage=1109&rft.pages=1106-1109&rft.isbn=9781467307215&rft.isbn_list=1467307211&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CSSS.2012.280&rft_dat=%3Cieee_6IE%3E6394518%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769547190&rft.eisbn_list=0769547192&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6394518&rfr_iscdi=true