Manifold learning reveals nonlinear structure in metagenomic profiles

Using metagenomics to detect the global structure of microbial community remains a significant challenge. The structure of a microbial community and its functions are complicated not only because of the complex interactions among microbes but also their complicate interacting with confounding enviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xingpeng Jiang, Xiaohua Hu, Huiyu Shen, Tingting He
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Xingpeng Jiang
Xiaohua Hu
Huiyu Shen
Tingting He
description Using metagenomics to detect the global structure of microbial community remains a significant challenge. The structure of a microbial community and its functions are complicated not only because of the complex interactions among microbes but also their complicate interacting with confounding environmental factors. Recently dimension reduction methods such as Principle component analysis, Non-negative matrix factorization and Canonical correlation analysis have been employed extensively to investigate the complex structure embedded in metagenomic profiles which summarize the abundance of functional or taxonomic categorizations in metagenomic studies. However, metagenomic profiles are not necessary to meet the "Assumption of Linearity" behind these methods. Therefore it is worth to investigate how nonlinear methods can be utilized in metagenomic studies. In this paper, a nonlinear manifold learning method- Isomap is used to visualize and analyze large-scale metagenomic profiles. Isomap was applied on a large-scale Pfam profile which are derived from 45 metagenomes in Global Ocean Sampling expedition. In our result, a novel nonlinear structure of protein families is identified and the relationships among the identified nonlinear components and environmental factors of global ocean are explored. The results indicate the strength of nonlinear methods in learning the complex microbial structure. With the coming of the huge number of new sequenced metagenomes, nonlinear methods like Isomap could be necessary complementary tools to current widely used methods.
doi_str_mv 10.1109/BIBM.2012.6392684
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6392684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6392684</ieee_id><sourcerecordid>6392684</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-60281ecfce656b1631590e9821d6ed5c79a41715ee446012146b7312b56db8ab3</originalsourceid><addsrcrecordid>eNpVj01qwzAUhFVKoSX1AUI3uoBdPf1ZWjYhbQMJ3WQfJPk5KNhykJ1Cb19Ds-lqmA9mmCFkCawCYPZ1tV3tK86AV1pYro28I4WtDUhdC66UUff_vOWPpBjHM2MMmJihfSKbvUuxHbqGduhyiulEM36j60aahtTFNFM6TvkapmtGGhPtcXInTEMfA73koY0djs_koZ0jWNx0QQ7vm8P6s9x9fWzXb7syWjaVmnEDGNqAWmkPWoCyDK3h0GhsVKitk1CDQpRSz6_m3b4WwL3SjTfOiwV5-auNiHi85Ni7_HO8fRe_SI9Mzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Manifold learning reveals nonlinear structure in metagenomic profiles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xingpeng Jiang ; Xiaohua Hu ; Huiyu Shen ; Tingting He</creator><creatorcontrib>Xingpeng Jiang ; Xiaohua Hu ; Huiyu Shen ; Tingting He</creatorcontrib><description>Using metagenomics to detect the global structure of microbial community remains a significant challenge. The structure of a microbial community and its functions are complicated not only because of the complex interactions among microbes but also their complicate interacting with confounding environmental factors. Recently dimension reduction methods such as Principle component analysis, Non-negative matrix factorization and Canonical correlation analysis have been employed extensively to investigate the complex structure embedded in metagenomic profiles which summarize the abundance of functional or taxonomic categorizations in metagenomic studies. However, metagenomic profiles are not necessary to meet the "Assumption of Linearity" behind these methods. Therefore it is worth to investigate how nonlinear methods can be utilized in metagenomic studies. In this paper, a nonlinear manifold learning method- Isomap is used to visualize and analyze large-scale metagenomic profiles. Isomap was applied on a large-scale Pfam profile which are derived from 45 metagenomes in Global Ocean Sampling expedition. In our result, a novel nonlinear structure of protein families is identified and the relationships among the identified nonlinear components and environmental factors of global ocean are explored. The results indicate the strength of nonlinear methods in learning the complex microbial structure. With the coming of the huge number of new sequenced metagenomes, nonlinear methods like Isomap could be necessary complementary tools to current widely used methods.</description><identifier>ISBN: 9781467325592</identifier><identifier>ISBN: 1467325597</identifier><identifier>EISBN: 9781467325585</identifier><identifier>EISBN: 1467325589</identifier><identifier>EISBN: 1467325600</identifier><identifier>EISBN: 9781467325608</identifier><identifier>DOI: 10.1109/BIBM.2012.6392684</identifier><language>eng</language><publisher>IEEE</publisher><subject>Communities ; Correlation ; Covariance matrix ; Environmental factors ; Isomap ; Matrix decomposition ; metagenomic profile ; non-negative matrix factorization ; Nonlinear dimension reduction ; Oceans ; Principal component analysis ; principle component analysis</subject><ispartof>2012 IEEE International Conference on Bioinformatics and Biomedicine, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6392684$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6392684$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xingpeng Jiang</creatorcontrib><creatorcontrib>Xiaohua Hu</creatorcontrib><creatorcontrib>Huiyu Shen</creatorcontrib><creatorcontrib>Tingting He</creatorcontrib><title>Manifold learning reveals nonlinear structure in metagenomic profiles</title><title>2012 IEEE International Conference on Bioinformatics and Biomedicine</title><addtitle>BIBM</addtitle><description>Using metagenomics to detect the global structure of microbial community remains a significant challenge. The structure of a microbial community and its functions are complicated not only because of the complex interactions among microbes but also their complicate interacting with confounding environmental factors. Recently dimension reduction methods such as Principle component analysis, Non-negative matrix factorization and Canonical correlation analysis have been employed extensively to investigate the complex structure embedded in metagenomic profiles which summarize the abundance of functional or taxonomic categorizations in metagenomic studies. However, metagenomic profiles are not necessary to meet the "Assumption of Linearity" behind these methods. Therefore it is worth to investigate how nonlinear methods can be utilized in metagenomic studies. In this paper, a nonlinear manifold learning method- Isomap is used to visualize and analyze large-scale metagenomic profiles. Isomap was applied on a large-scale Pfam profile which are derived from 45 metagenomes in Global Ocean Sampling expedition. In our result, a novel nonlinear structure of protein families is identified and the relationships among the identified nonlinear components and environmental factors of global ocean are explored. The results indicate the strength of nonlinear methods in learning the complex microbial structure. With the coming of the huge number of new sequenced metagenomes, nonlinear methods like Isomap could be necessary complementary tools to current widely used methods.</description><subject>Communities</subject><subject>Correlation</subject><subject>Covariance matrix</subject><subject>Environmental factors</subject><subject>Isomap</subject><subject>Matrix decomposition</subject><subject>metagenomic profile</subject><subject>non-negative matrix factorization</subject><subject>Nonlinear dimension reduction</subject><subject>Oceans</subject><subject>Principal component analysis</subject><subject>principle component analysis</subject><isbn>9781467325592</isbn><isbn>1467325597</isbn><isbn>9781467325585</isbn><isbn>1467325589</isbn><isbn>1467325600</isbn><isbn>9781467325608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj01qwzAUhFVKoSX1AUI3uoBdPf1ZWjYhbQMJ3WQfJPk5KNhykJ1Cb19Ds-lqmA9mmCFkCawCYPZ1tV3tK86AV1pYro28I4WtDUhdC66UUff_vOWPpBjHM2MMmJihfSKbvUuxHbqGduhyiulEM36j60aahtTFNFM6TvkapmtGGhPtcXInTEMfA73koY0djs_koZ0jWNx0QQ7vm8P6s9x9fWzXb7syWjaVmnEDGNqAWmkPWoCyDK3h0GhsVKitk1CDQpRSz6_m3b4WwL3SjTfOiwV5-auNiHi85Ni7_HO8fRe_SI9Mzg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Xingpeng Jiang</creator><creator>Xiaohua Hu</creator><creator>Huiyu Shen</creator><creator>Tingting He</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Manifold learning reveals nonlinear structure in metagenomic profiles</title><author>Xingpeng Jiang ; Xiaohua Hu ; Huiyu Shen ; Tingting He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-60281ecfce656b1631590e9821d6ed5c79a41715ee446012146b7312b56db8ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Communities</topic><topic>Correlation</topic><topic>Covariance matrix</topic><topic>Environmental factors</topic><topic>Isomap</topic><topic>Matrix decomposition</topic><topic>metagenomic profile</topic><topic>non-negative matrix factorization</topic><topic>Nonlinear dimension reduction</topic><topic>Oceans</topic><topic>Principal component analysis</topic><topic>principle component analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xingpeng Jiang</creatorcontrib><creatorcontrib>Xiaohua Hu</creatorcontrib><creatorcontrib>Huiyu Shen</creatorcontrib><creatorcontrib>Tingting He</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xingpeng Jiang</au><au>Xiaohua Hu</au><au>Huiyu Shen</au><au>Tingting He</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Manifold learning reveals nonlinear structure in metagenomic profiles</atitle><btitle>2012 IEEE International Conference on Bioinformatics and Biomedicine</btitle><stitle>BIBM</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467325592</isbn><isbn>1467325597</isbn><eisbn>9781467325585</eisbn><eisbn>1467325589</eisbn><eisbn>1467325600</eisbn><eisbn>9781467325608</eisbn><abstract>Using metagenomics to detect the global structure of microbial community remains a significant challenge. The structure of a microbial community and its functions are complicated not only because of the complex interactions among microbes but also their complicate interacting with confounding environmental factors. Recently dimension reduction methods such as Principle component analysis, Non-negative matrix factorization and Canonical correlation analysis have been employed extensively to investigate the complex structure embedded in metagenomic profiles which summarize the abundance of functional or taxonomic categorizations in metagenomic studies. However, metagenomic profiles are not necessary to meet the "Assumption of Linearity" behind these methods. Therefore it is worth to investigate how nonlinear methods can be utilized in metagenomic studies. In this paper, a nonlinear manifold learning method- Isomap is used to visualize and analyze large-scale metagenomic profiles. Isomap was applied on a large-scale Pfam profile which are derived from 45 metagenomes in Global Ocean Sampling expedition. In our result, a novel nonlinear structure of protein families is identified and the relationships among the identified nonlinear components and environmental factors of global ocean are explored. The results indicate the strength of nonlinear methods in learning the complex microbial structure. With the coming of the huge number of new sequenced metagenomes, nonlinear methods like Isomap could be necessary complementary tools to current widely used methods.</abstract><pub>IEEE</pub><doi>10.1109/BIBM.2012.6392684</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467325592
ispartof 2012 IEEE International Conference on Bioinformatics and Biomedicine, 2012, p.1-6
issn
language eng
recordid cdi_ieee_primary_6392684
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Communities
Correlation
Covariance matrix
Environmental factors
Isomap
Matrix decomposition
metagenomic profile
non-negative matrix factorization
Nonlinear dimension reduction
Oceans
Principal component analysis
principle component analysis
title Manifold learning reveals nonlinear structure in metagenomic profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Manifold%20learning%20reveals%20nonlinear%20structure%20in%20metagenomic%20profiles&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine&rft.au=Xingpeng%20Jiang&rft.date=2012-10&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467325592&rft.isbn_list=1467325597&rft_id=info:doi/10.1109/BIBM.2012.6392684&rft_dat=%3Cieee_6IE%3E6392684%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325585&rft.eisbn_list=1467325589&rft.eisbn_list=1467325600&rft.eisbn_list=9781467325608&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6392684&rfr_iscdi=true