On the design of advanced filters for biological networks using graph theoretic properties
Network modeling of biological systems is a powerful tool for analysis of high-throughput datasets by computational systems biologists. Integration of networks to form a heterogeneous model requires that each network be as noise-free as possible while still containing relevant biological information...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Dempsey, K. Chen, T. Bhowmick, S. Ali, H. |
description | Network modeling of biological systems is a powerful tool for analysis of high-throughput datasets by computational systems biologists. Integration of networks to form a heterogeneous model requires that each network be as noise-free as possible while still containing relevant biological information. In earlier work, we have shown that the graph theoretic properties of gene correlation networks can be used to highlight and maintain important structures such as high degree nodes, clusters, and critical links between sparse network branches while reducing noise. In this paper, we propose the design of advanced network filters using structurally related graph theoretic properties. While spanning trees and chordal subgraphs provide filters with special advantages, we hypothesize that a hybrid subgraph sampling method will allow for the design of a more effective filter preserving key properties in biological networks. That the proposed approach allows us to optimize a number of parameters associated with the filtering process which in turn improves upon the identification of essential genes in mouse aging networks. |
doi_str_mv | 10.1109/BIBM.2012.6392617 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6392617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6392617</ieee_id><sourcerecordid>6392617</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5e243fc618f6952c70f449388135f1a157b158912523c28d2f1398371625509a3</originalsourceid><addsrcrecordid>eNpVkL1OwzAUhY0QEqjkARCLXyDB147_RloBrVTUpRNL5SbXqSHEkR1AvD1FdGE6-s7wSecQcgOsAmD2br6aP1ecAa-UsFyBPiOF1QZqpQWX0sjzf2z5JSlyfmWMARPH0l6Rl81ApwPSFnPoBho9de2nGxpsqQ_9hClTHxPdh9jHLjSupwNOXzG9ZfqRw9DRLrnx8KuICafQ0DHFEdMUMF-TC-_6jMUpZ2T7-LBdLMv15mm1uF-XwbKplMhr4RsFxisreaOZr2srjAEhPTiQeg_SWOCSi4ablnsQ1ggN6riIWSdm5PZPGxBxN6bw7tL37nSI-AFhvFL8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the design of advanced filters for biological networks using graph theoretic properties</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dempsey, K. ; Chen, T. ; Bhowmick, S. ; Ali, H.</creator><creatorcontrib>Dempsey, K. ; Chen, T. ; Bhowmick, S. ; Ali, H.</creatorcontrib><description>Network modeling of biological systems is a powerful tool for analysis of high-throughput datasets by computational systems biologists. Integration of networks to form a heterogeneous model requires that each network be as noise-free as possible while still containing relevant biological information. In earlier work, we have shown that the graph theoretic properties of gene correlation networks can be used to highlight and maintain important structures such as high degree nodes, clusters, and critical links between sparse network branches while reducing noise. In this paper, we propose the design of advanced network filters using structurally related graph theoretic properties. While spanning trees and chordal subgraphs provide filters with special advantages, we hypothesize that a hybrid subgraph sampling method will allow for the design of a more effective filter preserving key properties in biological networks. That the proposed approach allows us to optimize a number of parameters associated with the filtering process which in turn improves upon the identification of essential genes in mouse aging networks.</description><identifier>ISBN: 9781467325592</identifier><identifier>ISBN: 1467325597</identifier><identifier>EISBN: 9781467325585</identifier><identifier>EISBN: 1467325589</identifier><identifier>EISBN: 1467325600</identifier><identifier>EISBN: 9781467325608</identifier><identifier>DOI: 10.1109/BIBM.2012.6392617</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; biological networks ; Biological system modeling ; chordal graphs ; clusters ; Correlation ; Filtering algorithms ; hubs ; lethal genes ; network filters ; Noise ; spanning tree ; Vegetation</subject><ispartof>2012 IEEE International Conference on Bioinformatics and Biomedicine, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6392617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6392617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dempsey, K.</creatorcontrib><creatorcontrib>Chen, T.</creatorcontrib><creatorcontrib>Bhowmick, S.</creatorcontrib><creatorcontrib>Ali, H.</creatorcontrib><title>On the design of advanced filters for biological networks using graph theoretic properties</title><title>2012 IEEE International Conference on Bioinformatics and Biomedicine</title><addtitle>BIBM</addtitle><description>Network modeling of biological systems is a powerful tool for analysis of high-throughput datasets by computational systems biologists. Integration of networks to form a heterogeneous model requires that each network be as noise-free as possible while still containing relevant biological information. In earlier work, we have shown that the graph theoretic properties of gene correlation networks can be used to highlight and maintain important structures such as high degree nodes, clusters, and critical links between sparse network branches while reducing noise. In this paper, we propose the design of advanced network filters using structurally related graph theoretic properties. While spanning trees and chordal subgraphs provide filters with special advantages, we hypothesize that a hybrid subgraph sampling method will allow for the design of a more effective filter preserving key properties in biological networks. That the proposed approach allows us to optimize a number of parameters associated with the filtering process which in turn improves upon the identification of essential genes in mouse aging networks.</description><subject>Bioinformatics</subject><subject>biological networks</subject><subject>Biological system modeling</subject><subject>chordal graphs</subject><subject>clusters</subject><subject>Correlation</subject><subject>Filtering algorithms</subject><subject>hubs</subject><subject>lethal genes</subject><subject>network filters</subject><subject>Noise</subject><subject>spanning tree</subject><subject>Vegetation</subject><isbn>9781467325592</isbn><isbn>1467325597</isbn><isbn>9781467325585</isbn><isbn>1467325589</isbn><isbn>1467325600</isbn><isbn>9781467325608</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkL1OwzAUhY0QEqjkARCLXyDB147_RloBrVTUpRNL5SbXqSHEkR1AvD1FdGE6-s7wSecQcgOsAmD2br6aP1ecAa-UsFyBPiOF1QZqpQWX0sjzf2z5JSlyfmWMARPH0l6Rl81ApwPSFnPoBho9de2nGxpsqQ_9hClTHxPdh9jHLjSupwNOXzG9ZfqRw9DRLrnx8KuICafQ0DHFEdMUMF-TC-_6jMUpZ2T7-LBdLMv15mm1uF-XwbKplMhr4RsFxisreaOZr2srjAEhPTiQeg_SWOCSi4ablnsQ1ggN6riIWSdm5PZPGxBxN6bw7tL37nSI-AFhvFL8</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Dempsey, K.</creator><creator>Chen, T.</creator><creator>Bhowmick, S.</creator><creator>Ali, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>On the design of advanced filters for biological networks using graph theoretic properties</title><author>Dempsey, K. ; Chen, T. ; Bhowmick, S. ; Ali, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5e243fc618f6952c70f449388135f1a157b158912523c28d2f1398371625509a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bioinformatics</topic><topic>biological networks</topic><topic>Biological system modeling</topic><topic>chordal graphs</topic><topic>clusters</topic><topic>Correlation</topic><topic>Filtering algorithms</topic><topic>hubs</topic><topic>lethal genes</topic><topic>network filters</topic><topic>Noise</topic><topic>spanning tree</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Dempsey, K.</creatorcontrib><creatorcontrib>Chen, T.</creatorcontrib><creatorcontrib>Bhowmick, S.</creatorcontrib><creatorcontrib>Ali, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dempsey, K.</au><au>Chen, T.</au><au>Bhowmick, S.</au><au>Ali, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the design of advanced filters for biological networks using graph theoretic properties</atitle><btitle>2012 IEEE International Conference on Bioinformatics and Biomedicine</btitle><stitle>BIBM</stitle><date>2012-10</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467325592</isbn><isbn>1467325597</isbn><eisbn>9781467325585</eisbn><eisbn>1467325589</eisbn><eisbn>1467325600</eisbn><eisbn>9781467325608</eisbn><abstract>Network modeling of biological systems is a powerful tool for analysis of high-throughput datasets by computational systems biologists. Integration of networks to form a heterogeneous model requires that each network be as noise-free as possible while still containing relevant biological information. In earlier work, we have shown that the graph theoretic properties of gene correlation networks can be used to highlight and maintain important structures such as high degree nodes, clusters, and critical links between sparse network branches while reducing noise. In this paper, we propose the design of advanced network filters using structurally related graph theoretic properties. While spanning trees and chordal subgraphs provide filters with special advantages, we hypothesize that a hybrid subgraph sampling method will allow for the design of a more effective filter preserving key properties in biological networks. That the proposed approach allows us to optimize a number of parameters associated with the filtering process which in turn improves upon the identification of essential genes in mouse aging networks.</abstract><pub>IEEE</pub><doi>10.1109/BIBM.2012.6392617</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467325592 |
ispartof | 2012 IEEE International Conference on Bioinformatics and Biomedicine, 2012, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6392617 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics biological networks Biological system modeling chordal graphs clusters Correlation Filtering algorithms hubs lethal genes network filters Noise spanning tree Vegetation |
title | On the design of advanced filters for biological networks using graph theoretic properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20design%20of%20advanced%20filters%20for%20biological%20networks%20using%20graph%20theoretic%20properties&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine&rft.au=Dempsey,%20K.&rft.date=2012-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467325592&rft.isbn_list=1467325597&rft_id=info:doi/10.1109/BIBM.2012.6392617&rft_dat=%3Cieee_6IE%3E6392617%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467325585&rft.eisbn_list=1467325589&rft.eisbn_list=1467325600&rft.eisbn_list=9781467325608&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6392617&rfr_iscdi=true |