Branch Strategy and Deletion Strategy Matching on Interval Global Optimization Algorithm

Nowadays, the computing capability is increasing steadily. It has gradually become possible to solve the global optimization problem of complex function. For the global optimization solution, the requirements of correctness and completeness have become more sophisticated. This paper presents a deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xuening Fan, Yongmei Lei, Ronggang Jia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue
container_start_page 1034
container_title
container_volume
creator Xuening Fan
Yongmei Lei
Ronggang Jia
description Nowadays, the computing capability is increasing steadily. It has gradually become possible to solve the global optimization problem of complex function. For the global optimization solution, the requirements of correctness and completeness have become more sophisticated. This paper presents a deterministic algorithm - branch strategy and deletion strategy matching on interval global optimization algorithm (BMD).This algorithm aims at a kind of function who has first-order continuous function in its search domain. This method execute deterministic search in the search range, and can get the calculation results of the deterministic algorithm. Its computational amount is less than the current deterministic algorithm and random algorithms. It can reduce the computational amount and speed up the convergence under the premise of finding the exact global optimal solution without increasing memory consumption.
doi_str_mv 10.1109/CIT.2012.212
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6392048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6392048</ieee_id><sourcerecordid>6392048</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5bf0a7e23dd46dfec17cd6d8b4fa9d333a4b235d23042cd761523ab3e147cc423</originalsourceid><addsrcrecordid>eNpFjE9LwzAcQCMiqLM3b176BVZ_yS9p0uOsbhYmO9jDbiNN0jbSP6MNwvz0DhU8PXjwHiH3FBJKIXvMizJhQFnCKLsgtyDTTHAl1P6SRJlUlKcSuZIor0k0zx8AQAEFSHZD9k-THkwbv4dJB9ecYj3Y-Nl1Lvhx-LdvOpjWD018lsUQ3PSpu3jTjdUZu2Pwvf_SP8Wqa8bJh7a_I1e17mYX_XFByvVLmb8ut7tNka-2S59BWIqqBi0dQ2t5amtnqDQ2taritc4sImpeMRSWIXBmrEypYKgrdJRLYzjDBXn43Xrn3OE4-V5Pp0OKGQOu8Bsj7FKU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Branch Strategy and Deletion Strategy Matching on Interval Global Optimization Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xuening Fan ; Yongmei Lei ; Ronggang Jia</creator><creatorcontrib>Xuening Fan ; Yongmei Lei ; Ronggang Jia</creatorcontrib><description>Nowadays, the computing capability is increasing steadily. It has gradually become possible to solve the global optimization problem of complex function. For the global optimization solution, the requirements of correctness and completeness have become more sophisticated. This paper presents a deterministic algorithm - branch strategy and deletion strategy matching on interval global optimization algorithm (BMD).This algorithm aims at a kind of function who has first-order continuous function in its search domain. This method execute deterministic search in the search range, and can get the calculation results of the deterministic algorithm. Its computational amount is less than the current deterministic algorithm and random algorithms. It can reduce the computational amount and speed up the convergence under the premise of finding the exact global optimal solution without increasing memory consumption.</description><identifier>ISBN: 9781467348737</identifier><identifier>ISBN: 1467348732</identifier><identifier>EISBN: 076954858X</identifier><identifier>EISBN: 9780769548586</identifier><identifier>DOI: 10.1109/CIT.2012.212</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Algorithm design and analysis ; branch strategy ; Convergence ; deletion strategy ; global optimization ; interval algorithm ; Linear programming ; Memory management ; Optimization ; Search problems</subject><ispartof>2012 IEEE 12th International Conference on Computer and Information Technology, 2012, p.1034-1039</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6392048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6392048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xuening Fan</creatorcontrib><creatorcontrib>Yongmei Lei</creatorcontrib><creatorcontrib>Ronggang Jia</creatorcontrib><title>Branch Strategy and Deletion Strategy Matching on Interval Global Optimization Algorithm</title><title>2012 IEEE 12th International Conference on Computer and Information Technology</title><addtitle>cit</addtitle><description>Nowadays, the computing capability is increasing steadily. It has gradually become possible to solve the global optimization problem of complex function. For the global optimization solution, the requirements of correctness and completeness have become more sophisticated. This paper presents a deterministic algorithm - branch strategy and deletion strategy matching on interval global optimization algorithm (BMD).This algorithm aims at a kind of function who has first-order continuous function in its search domain. This method execute deterministic search in the search range, and can get the calculation results of the deterministic algorithm. Its computational amount is less than the current deterministic algorithm and random algorithms. It can reduce the computational amount and speed up the convergence under the premise of finding the exact global optimal solution without increasing memory consumption.</description><subject>Acceleration</subject><subject>Algorithm design and analysis</subject><subject>branch strategy</subject><subject>Convergence</subject><subject>deletion strategy</subject><subject>global optimization</subject><subject>interval algorithm</subject><subject>Linear programming</subject><subject>Memory management</subject><subject>Optimization</subject><subject>Search problems</subject><isbn>9781467348737</isbn><isbn>1467348732</isbn><isbn>076954858X</isbn><isbn>9780769548586</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjE9LwzAcQCMiqLM3b176BVZ_yS9p0uOsbhYmO9jDbiNN0jbSP6MNwvz0DhU8PXjwHiH3FBJKIXvMizJhQFnCKLsgtyDTTHAl1P6SRJlUlKcSuZIor0k0zx8AQAEFSHZD9k-THkwbv4dJB9ecYj3Y-Nl1Lvhx-LdvOpjWD018lsUQ3PSpu3jTjdUZu2Pwvf_SP8Wqa8bJh7a_I1e17mYX_XFByvVLmb8ut7tNka-2S59BWIqqBi0dQ2t5amtnqDQ2taritc4sImpeMRSWIXBmrEypYKgrdJRLYzjDBXn43Xrn3OE4-V5Pp0OKGQOu8Bsj7FKU</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Xuening Fan</creator><creator>Yongmei Lei</creator><creator>Ronggang Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Branch Strategy and Deletion Strategy Matching on Interval Global Optimization Algorithm</title><author>Xuening Fan ; Yongmei Lei ; Ronggang Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5bf0a7e23dd46dfec17cd6d8b4fa9d333a4b235d23042cd761523ab3e147cc423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Algorithm design and analysis</topic><topic>branch strategy</topic><topic>Convergence</topic><topic>deletion strategy</topic><topic>global optimization</topic><topic>interval algorithm</topic><topic>Linear programming</topic><topic>Memory management</topic><topic>Optimization</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Xuening Fan</creatorcontrib><creatorcontrib>Yongmei Lei</creatorcontrib><creatorcontrib>Ronggang Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xuening Fan</au><au>Yongmei Lei</au><au>Ronggang Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Branch Strategy and Deletion Strategy Matching on Interval Global Optimization Algorithm</atitle><btitle>2012 IEEE 12th International Conference on Computer and Information Technology</btitle><stitle>cit</stitle><date>2012-10</date><risdate>2012</risdate><spage>1034</spage><epage>1039</epage><pages>1034-1039</pages><isbn>9781467348737</isbn><isbn>1467348732</isbn><eisbn>076954858X</eisbn><eisbn>9780769548586</eisbn><coden>IEEPAD</coden><abstract>Nowadays, the computing capability is increasing steadily. It has gradually become possible to solve the global optimization problem of complex function. For the global optimization solution, the requirements of correctness and completeness have become more sophisticated. This paper presents a deterministic algorithm - branch strategy and deletion strategy matching on interval global optimization algorithm (BMD).This algorithm aims at a kind of function who has first-order continuous function in its search domain. This method execute deterministic search in the search range, and can get the calculation results of the deterministic algorithm. Its computational amount is less than the current deterministic algorithm and random algorithms. It can reduce the computational amount and speed up the convergence under the premise of finding the exact global optimal solution without increasing memory consumption.</abstract><pub>IEEE</pub><doi>10.1109/CIT.2012.212</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467348737
ispartof 2012 IEEE 12th International Conference on Computer and Information Technology, 2012, p.1034-1039
issn
language eng
recordid cdi_ieee_primary_6392048
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Algorithm design and analysis
branch strategy
Convergence
deletion strategy
global optimization
interval algorithm
Linear programming
Memory management
Optimization
Search problems
title Branch Strategy and Deletion Strategy Matching on Interval Global Optimization Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Branch%20Strategy%20and%20Deletion%20Strategy%20Matching%20on%20Interval%20Global%20Optimization%20Algorithm&rft.btitle=2012%20IEEE%2012th%20International%20Conference%20on%20Computer%20and%20Information%20Technology&rft.au=Xuening%20Fan&rft.date=2012-10&rft.spage=1034&rft.epage=1039&rft.pages=1034-1039&rft.isbn=9781467348737&rft.isbn_list=1467348732&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CIT.2012.212&rft_dat=%3Cieee_6IE%3E6392048%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=076954858X&rft.eisbn_list=9780769548586&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6392048&rfr_iscdi=true