Ensemble tracking based on randomized trees
Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized tree...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3823 |
---|---|
container_issue | |
container_start_page | 3818 |
container_title | |
container_volume | |
creator | Gu Xingfang Mao Yaobin Kong Jianshou |
description | Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6390591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6390591</ieee_id><sourcerecordid>6390591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aa7c105cdd33e02536a65add877c78af65e9db293604978bcad7ce9ad9fc48963</originalsourceid><addsrcrecordid>eNotjk1LxDAQQOMX2F33F3jpXQKZTDNJjrKsH7DgRc_LNJlKdduVphf99Rb09HiXxztTm-hDDAEcYQA4V5UFAm2j9RdqBQ15tC4AXqoKIjYaPIVrtSrlwxgyEbBSd7uxyNAepZ4nTp_9-F63XCTXp7GeeMynof9ZbJ5Eyo266vhYZPPPtXp72L1un_T-5fF5e7_XPXg3a2afwLiUM6IY65CYHOccvE8-cEdOYm5tRDLN8t8mzj5J5By71IRIuFa3f91eRA5fUz_w9H0gjMYtz7_soED0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ensemble tracking based on randomized trees</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gu Xingfang ; Mao Yaobin ; Kong Jianshou</creator><creatorcontrib>Gu Xingfang ; Mao Yaobin ; Kong Jianshou</creatorcontrib><description>Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 1467325813</identifier><identifier>ISBN: 9781467325813</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789881563811</identifier><identifier>EISBN: 988156381X</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; adaptive appearance model ; Algorithm design and analysis ; Computer vision ; extremely randomized trees ; Radio frequency ; random forests ; Training ; Vegetation ; Visual tracking ; Visualization</subject><ispartof>Proceedings of the 31st Chinese Control Conference, 2012, p.3818-3823</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6390591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6390591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu Xingfang</creatorcontrib><creatorcontrib>Mao Yaobin</creatorcontrib><creatorcontrib>Kong Jianshou</creatorcontrib><title>Ensemble tracking based on randomized trees</title><title>Proceedings of the 31st Chinese Control Conference</title><addtitle>ChiCC</addtitle><description>Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.</description><subject>Adaptation models</subject><subject>adaptive appearance model</subject><subject>Algorithm design and analysis</subject><subject>Computer vision</subject><subject>extremely randomized trees</subject><subject>Radio frequency</subject><subject>random forests</subject><subject>Training</subject><subject>Vegetation</subject><subject>Visual tracking</subject><subject>Visualization</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>1467325813</isbn><isbn>9781467325813</isbn><isbn>9789881563811</isbn><isbn>988156381X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1LxDAQQOMX2F33F3jpXQKZTDNJjrKsH7DgRc_LNJlKdduVphf99Rb09HiXxztTm-hDDAEcYQA4V5UFAm2j9RdqBQ15tC4AXqoKIjYaPIVrtSrlwxgyEbBSd7uxyNAepZ4nTp_9-F63XCTXp7GeeMynof9ZbJ5Eyo266vhYZPPPtXp72L1un_T-5fF5e7_XPXg3a2afwLiUM6IY65CYHOccvE8-cEdOYm5tRDLN8t8mzj5J5By71IRIuFa3f91eRA5fUz_w9H0gjMYtz7_soED0</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Gu Xingfang</creator><creator>Mao Yaobin</creator><creator>Kong Jianshou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Ensemble tracking based on randomized trees</title><author>Gu Xingfang ; Mao Yaobin ; Kong Jianshou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aa7c105cdd33e02536a65add877c78af65e9db293604978bcad7ce9ad9fc48963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>adaptive appearance model</topic><topic>Algorithm design and analysis</topic><topic>Computer vision</topic><topic>extremely randomized trees</topic><topic>Radio frequency</topic><topic>random forests</topic><topic>Training</topic><topic>Vegetation</topic><topic>Visual tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gu Xingfang</creatorcontrib><creatorcontrib>Mao Yaobin</creatorcontrib><creatorcontrib>Kong Jianshou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu Xingfang</au><au>Mao Yaobin</au><au>Kong Jianshou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ensemble tracking based on randomized trees</atitle><btitle>Proceedings of the 31st Chinese Control Conference</btitle><stitle>ChiCC</stitle><date>2012-07</date><risdate>2012</risdate><spage>3818</spage><epage>3823</epage><pages>3818-3823</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>1467325813</isbn><isbn>9781467325813</isbn><eisbn>9789881563811</eisbn><eisbn>988156381X</eisbn><abstract>Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | Proceedings of the 31st Chinese Control Conference, 2012, p.3818-3823 |
issn | 1934-1768 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_6390591 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models adaptive appearance model Algorithm design and analysis Computer vision extremely randomized trees Radio frequency random forests Training Vegetation Visual tracking Visualization |
title | Ensemble tracking based on randomized trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ensemble%20tracking%20based%20on%20randomized%20trees&rft.btitle=Proceedings%20of%20the%2031st%20Chinese%20Control%20Conference&rft.au=Gu%20Xingfang&rft.date=2012-07&rft.spage=3818&rft.epage=3823&rft.pages=3818-3823&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=1467325813&rft.isbn_list=9781467325813&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6390591%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789881563811&rft.eisbn_list=988156381X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6390591&rfr_iscdi=true |