Ensemble tracking based on randomized trees

Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized tree...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gu Xingfang, Mao Yaobin, Kong Jianshou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3823
container_issue
container_start_page 3818
container_title
container_volume
creator Gu Xingfang
Mao Yaobin
Kong Jianshou
description Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6390591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6390591</ieee_id><sourcerecordid>6390591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-aa7c105cdd33e02536a65add877c78af65e9db293604978bcad7ce9ad9fc48963</originalsourceid><addsrcrecordid>eNotjk1LxDAQQOMX2F33F3jpXQKZTDNJjrKsH7DgRc_LNJlKdduVphf99Rb09HiXxztTm-hDDAEcYQA4V5UFAm2j9RdqBQ15tC4AXqoKIjYaPIVrtSrlwxgyEbBSd7uxyNAepZ4nTp_9-F63XCTXp7GeeMynof9ZbJ5Eyo266vhYZPPPtXp72L1un_T-5fF5e7_XPXg3a2afwLiUM6IY65CYHOccvE8-cEdOYm5tRDLN8t8mzj5J5By71IRIuFa3f91eRA5fUz_w9H0gjMYtz7_soED0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ensemble tracking based on randomized trees</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gu Xingfang ; Mao Yaobin ; Kong Jianshou</creator><creatorcontrib>Gu Xingfang ; Mao Yaobin ; Kong Jianshou</creatorcontrib><description>Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 1467325813</identifier><identifier>ISBN: 9781467325813</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789881563811</identifier><identifier>EISBN: 988156381X</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; adaptive appearance model ; Algorithm design and analysis ; Computer vision ; extremely randomized trees ; Radio frequency ; random forests ; Training ; Vegetation ; Visual tracking ; Visualization</subject><ispartof>Proceedings of the 31st Chinese Control Conference, 2012, p.3818-3823</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6390591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6390591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gu Xingfang</creatorcontrib><creatorcontrib>Mao Yaobin</creatorcontrib><creatorcontrib>Kong Jianshou</creatorcontrib><title>Ensemble tracking based on randomized trees</title><title>Proceedings of the 31st Chinese Control Conference</title><addtitle>ChiCC</addtitle><description>Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.</description><subject>Adaptation models</subject><subject>adaptive appearance model</subject><subject>Algorithm design and analysis</subject><subject>Computer vision</subject><subject>extremely randomized trees</subject><subject>Radio frequency</subject><subject>random forests</subject><subject>Training</subject><subject>Vegetation</subject><subject>Visual tracking</subject><subject>Visualization</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>1467325813</isbn><isbn>9781467325813</isbn><isbn>9789881563811</isbn><isbn>988156381X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjk1LxDAQQOMX2F33F3jpXQKZTDNJjrKsH7DgRc_LNJlKdduVphf99Rb09HiXxztTm-hDDAEcYQA4V5UFAm2j9RdqBQ15tC4AXqoKIjYaPIVrtSrlwxgyEbBSd7uxyNAepZ4nTp_9-F63XCTXp7GeeMynof9ZbJ5Eyo266vhYZPPPtXp72L1un_T-5fF5e7_XPXg3a2afwLiUM6IY65CYHOccvE8-cEdOYm5tRDLN8t8mzj5J5By71IRIuFa3f91eRA5fUz_w9H0gjMYtz7_soED0</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Gu Xingfang</creator><creator>Mao Yaobin</creator><creator>Kong Jianshou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Ensemble tracking based on randomized trees</title><author>Gu Xingfang ; Mao Yaobin ; Kong Jianshou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-aa7c105cdd33e02536a65add877c78af65e9db293604978bcad7ce9ad9fc48963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>adaptive appearance model</topic><topic>Algorithm design and analysis</topic><topic>Computer vision</topic><topic>extremely randomized trees</topic><topic>Radio frequency</topic><topic>random forests</topic><topic>Training</topic><topic>Vegetation</topic><topic>Visual tracking</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Gu Xingfang</creatorcontrib><creatorcontrib>Mao Yaobin</creatorcontrib><creatorcontrib>Kong Jianshou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gu Xingfang</au><au>Mao Yaobin</au><au>Kong Jianshou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ensemble tracking based on randomized trees</atitle><btitle>Proceedings of the 31st Chinese Control Conference</btitle><stitle>ChiCC</stitle><date>2012-07</date><risdate>2012</risdate><spage>3818</spage><epage>3823</epage><pages>3818-3823</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>1467325813</isbn><isbn>9781467325813</isbn><eisbn>9789881563811</eisbn><eisbn>988156381X</eisbn><abstract>Object tracking is an active yet challenging research topic in computer vision. Recently, a trend to treat the problem as a classification problem is boom. By such a paradigm, a discriminative classifier is trained and updated during tracking procedure. In this paper, the ensemble of randomized trees such as random forests or extremely randomized trees is employed to construct a discriminative appearance model to accomplish tracking task. Benefited from the noise insensitivity and operation efficiency of randomized trees, the appearance model used for tracking can be efficiently updated through growing new trees to substitute the degraded ones. Meanwhile, mean shift is introduced to locate the object in each newly arrived frame. Extensive experiments are performed to compare the proposed algorithm with four well-known tracking algorithms on several challenging video sequences. Convincing results demonstrate that the proposed tracker manages to handle illumination changes and pose variations.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof Proceedings of the 31st Chinese Control Conference, 2012, p.3818-3823
issn 1934-1768
2161-2927
language eng
recordid cdi_ieee_primary_6390591
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
adaptive appearance model
Algorithm design and analysis
Computer vision
extremely randomized trees
Radio frequency
random forests
Training
Vegetation
Visual tracking
Visualization
title Ensemble tracking based on randomized trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ensemble%20tracking%20based%20on%20randomized%20trees&rft.btitle=Proceedings%20of%20the%2031st%20Chinese%20Control%20Conference&rft.au=Gu%20Xingfang&rft.date=2012-07&rft.spage=3818&rft.epage=3823&rft.pages=3818-3823&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=1467325813&rft.isbn_list=9781467325813&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E6390591%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789881563811&rft.eisbn_list=988156381X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6390591&rfr_iscdi=true