Position control of DC motors with Experience Mapping based Prediction Controller

The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saikumar, N., Dinesh, N. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2399
container_issue
container_start_page 2394
container_title
container_volume
creator Saikumar, N.
Dinesh, N. S.
description The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.
doi_str_mv 10.1109/IECON.2012.6388869
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6388869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6388869</ieee_id><sourcerecordid>6388869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cda8ee4798d1fe6a2cb6f9cacf4f832435a1767409d42728853a553ac68e95af3</originalsourceid><addsrcrecordid>eNotkM9KAzEYxCMqqLUvoJe8wNZ8-Z-jrFUL1VZQ8FbS7BeNtJslu6C-vcX2NMzhN8wMIVfAJgDM3cym9eJ5whnwiRbWWu2OyAVIbQSXHMQxGTtjDx6cOyHnoJSolOHvZ2Tc91-MMQAuhWbn5GWZ-zSk3NKQ26HkDc2R3tV0m4dcevqdhk86_emwJGwD0iffdan9oGvfY0OXBZsU_ul6T2-wXJLT6Dc9jg86Im_309f6sZovHmb17bxKYNRQhcZbRGmcbSCi9jysdXTBhyij3TUXyoPRRjLXSG64tUr43QwftEWnfBQjcr3PTYi46kra-vK7Ojwi_gCjp1Na</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Position control of DC motors with Experience Mapping based Prediction Controller</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saikumar, N. ; Dinesh, N. S.</creator><creatorcontrib>Saikumar, N. ; Dinesh, N. S.</creatorcontrib><description>The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781467324199</identifier><identifier>ISBN: 1467324191</identifier><identifier>EISBN: 1467324213</identifier><identifier>EISBN: 9781467324205</identifier><identifier>EISBN: 9781467324212</identifier><identifier>EISBN: 1467324205</identifier><identifier>DOI: 10.1109/IECON.2012.6388869</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; DC motors ; Experience Mapping based Prediction Controller (EMPC) ; Humans ; Lead ; Position control</subject><ispartof>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2394-2399</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6388869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6388869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saikumar, N.</creatorcontrib><creatorcontrib>Dinesh, N. S.</creatorcontrib><title>Position control of DC motors with Experience Mapping based Prediction Controller</title><title>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>DC motors</subject><subject>Experience Mapping based Prediction Controller (EMPC)</subject><subject>Humans</subject><subject>Lead</subject><subject>Position control</subject><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><isbn>1467324213</isbn><isbn>9781467324205</isbn><isbn>9781467324212</isbn><isbn>1467324205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM9KAzEYxCMqqLUvoJe8wNZ8-Z-jrFUL1VZQ8FbS7BeNtJslu6C-vcX2NMzhN8wMIVfAJgDM3cym9eJ5whnwiRbWWu2OyAVIbQSXHMQxGTtjDx6cOyHnoJSolOHvZ2Tc91-MMQAuhWbn5GWZ-zSk3NKQ26HkDc2R3tV0m4dcevqdhk86_emwJGwD0iffdan9oGvfY0OXBZsU_ul6T2-wXJLT6Dc9jg86Im_309f6sZovHmb17bxKYNRQhcZbRGmcbSCi9jysdXTBhyij3TUXyoPRRjLXSG64tUr43QwftEWnfBQjcr3PTYi46kra-vK7Ojwi_gCjp1Na</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Saikumar, N.</creator><creator>Dinesh, N. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Position control of DC motors with Experience Mapping based Prediction Controller</title><author>Saikumar, N. ; Dinesh, N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cda8ee4798d1fe6a2cb6f9cacf4f832435a1767409d42728853a553ac68e95af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>DC motors</topic><topic>Experience Mapping based Prediction Controller (EMPC)</topic><topic>Humans</topic><topic>Lead</topic><topic>Position control</topic><toplevel>online_resources</toplevel><creatorcontrib>Saikumar, N.</creatorcontrib><creatorcontrib>Dinesh, N. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saikumar, N.</au><au>Dinesh, N. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Position control of DC motors with Experience Mapping based Prediction Controller</atitle><btitle>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2012-10</date><risdate>2012</risdate><spage>2394</spage><epage>2399</epage><pages>2394-2399</pages><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><eisbn>1467324213</eisbn><eisbn>9781467324205</eisbn><eisbn>9781467324212</eisbn><eisbn>1467324205</eisbn><abstract>The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2012.6388869</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2394-2399
issn 1553-572X
language eng
recordid cdi_ieee_primary_6388869
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Algorithm design and analysis
DC motors
Experience Mapping based Prediction Controller (EMPC)
Humans
Lead
Position control
title Position control of DC motors with Experience Mapping based Prediction Controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Position%20control%20of%20DC%20motors%20with%20Experience%20Mapping%20based%20Prediction%20Controller&rft.btitle=IECON%202012%20-%2038th%20Annual%20Conference%20on%20IEEE%20Industrial%20Electronics%20Society&rft.au=Saikumar,%20N.&rft.date=2012-10&rft.spage=2394&rft.epage=2399&rft.pages=2394-2399&rft.issn=1553-572X&rft.isbn=9781467324199&rft.isbn_list=1467324191&rft_id=info:doi/10.1109/IECON.2012.6388869&rft_dat=%3Cieee_6IE%3E6388869%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467324213&rft.eisbn_list=9781467324205&rft.eisbn_list=9781467324212&rft.eisbn_list=1467324205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6388869&rfr_iscdi=true