Position control of DC motors with Experience Mapping based Prediction Controller
The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the p...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2399 |
---|---|
container_issue | |
container_start_page | 2394 |
container_title | |
container_volume | |
creator | Saikumar, N. Dinesh, N. S. |
description | The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented. |
doi_str_mv | 10.1109/IECON.2012.6388869 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6388869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6388869</ieee_id><sourcerecordid>6388869</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cda8ee4798d1fe6a2cb6f9cacf4f832435a1767409d42728853a553ac68e95af3</originalsourceid><addsrcrecordid>eNotkM9KAzEYxCMqqLUvoJe8wNZ8-Z-jrFUL1VZQ8FbS7BeNtJslu6C-vcX2NMzhN8wMIVfAJgDM3cym9eJ5whnwiRbWWu2OyAVIbQSXHMQxGTtjDx6cOyHnoJSolOHvZ2Tc91-MMQAuhWbn5GWZ-zSk3NKQ26HkDc2R3tV0m4dcevqdhk86_emwJGwD0iffdan9oGvfY0OXBZsU_ul6T2-wXJLT6Dc9jg86Im_309f6sZovHmb17bxKYNRQhcZbRGmcbSCi9jysdXTBhyij3TUXyoPRRjLXSG64tUr43QwftEWnfBQjcr3PTYi46kra-vK7Ojwi_gCjp1Na</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Position control of DC motors with Experience Mapping based Prediction Controller</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saikumar, N. ; Dinesh, N. S.</creator><creatorcontrib>Saikumar, N. ; Dinesh, N. S.</creatorcontrib><description>The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781467324199</identifier><identifier>ISBN: 1467324191</identifier><identifier>EISBN: 1467324213</identifier><identifier>EISBN: 9781467324205</identifier><identifier>EISBN: 9781467324212</identifier><identifier>EISBN: 1467324205</identifier><identifier>DOI: 10.1109/IECON.2012.6388869</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Algorithm design and analysis ; DC motors ; Experience Mapping based Prediction Controller (EMPC) ; Humans ; Lead ; Position control</subject><ispartof>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2394-2399</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6388869$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6388869$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saikumar, N.</creatorcontrib><creatorcontrib>Dinesh, N. S.</creatorcontrib><title>Position control of DC motors with Experience Mapping based Prediction Controller</title><title>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.</description><subject>Adaptation models</subject><subject>Algorithm design and analysis</subject><subject>DC motors</subject><subject>Experience Mapping based Prediction Controller (EMPC)</subject><subject>Humans</subject><subject>Lead</subject><subject>Position control</subject><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><isbn>1467324213</isbn><isbn>9781467324205</isbn><isbn>9781467324212</isbn><isbn>1467324205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM9KAzEYxCMqqLUvoJe8wNZ8-Z-jrFUL1VZQ8FbS7BeNtJslu6C-vcX2NMzhN8wMIVfAJgDM3cym9eJ5whnwiRbWWu2OyAVIbQSXHMQxGTtjDx6cOyHnoJSolOHvZ2Tc91-MMQAuhWbn5GWZ-zSk3NKQ26HkDc2R3tV0m4dcevqdhk86_emwJGwD0iffdan9oGvfY0OXBZsU_ul6T2-wXJLT6Dc9jg86Im_309f6sZovHmb17bxKYNRQhcZbRGmcbSCi9jysdXTBhyij3TUXyoPRRjLXSG64tUr43QwftEWnfBQjcr3PTYi46kra-vK7Ojwi_gCjp1Na</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Saikumar, N.</creator><creator>Dinesh, N. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Position control of DC motors with Experience Mapping based Prediction Controller</title><author>Saikumar, N. ; Dinesh, N. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cda8ee4798d1fe6a2cb6f9cacf4f832435a1767409d42728853a553ac68e95af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Algorithm design and analysis</topic><topic>DC motors</topic><topic>Experience Mapping based Prediction Controller (EMPC)</topic><topic>Humans</topic><topic>Lead</topic><topic>Position control</topic><toplevel>online_resources</toplevel><creatorcontrib>Saikumar, N.</creatorcontrib><creatorcontrib>Dinesh, N. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saikumar, N.</au><au>Dinesh, N. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Position control of DC motors with Experience Mapping based Prediction Controller</atitle><btitle>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2012-10</date><risdate>2012</risdate><spage>2394</spage><epage>2399</epage><pages>2394-2399</pages><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><eisbn>1467324213</eisbn><eisbn>9781467324205</eisbn><eisbn>9781467324212</eisbn><eisbn>1467324205</eisbn><abstract>The paper presents a new controller inspired by the human experience based, voluntary body action control (dubbed motor control) learning mechanism. The controller is called Experience Mapping based Prediction Controller (EMPC). EMPC is designed with auto-learning features without the need for the plant model. The core of the controller is formed around the motor action prediction-control mechanism of humans based on past experiential learning with the ability to adapt to environmental changes intelligently. EMPC is utilized for high precision position control of DC motors. The simulation results are presented to show that accurate position control is achieved using EMPC for step and dynamic demands. The performance of EMPC is compared with conventional PD controller and MRAC based position controller under different system conditions. Position Control using EMPC is practically implemented and the results are presented.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2012.6388869</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1553-572X |
ispartof | IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2394-2399 |
issn | 1553-572X |
language | eng |
recordid | cdi_ieee_primary_6388869 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Algorithm design and analysis DC motors Experience Mapping based Prediction Controller (EMPC) Humans Lead Position control |
title | Position control of DC motors with Experience Mapping based Prediction Controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Position%20control%20of%20DC%20motors%20with%20Experience%20Mapping%20based%20Prediction%20Controller&rft.btitle=IECON%202012%20-%2038th%20Annual%20Conference%20on%20IEEE%20Industrial%20Electronics%20Society&rft.au=Saikumar,%20N.&rft.date=2012-10&rft.spage=2394&rft.epage=2399&rft.pages=2394-2399&rft.issn=1553-572X&rft.isbn=9781467324199&rft.isbn_list=1467324191&rft_id=info:doi/10.1109/IECON.2012.6388869&rft_dat=%3Cieee_6IE%3E6388869%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467324213&rft.eisbn_list=9781467324205&rft.eisbn_list=9781467324212&rft.eisbn_list=1467324205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6388869&rfr_iscdi=true |