Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed
This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spac...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2621 |
---|---|
container_issue | |
container_start_page | 2619 |
container_title | |
container_volume | |
creator | Chaoui, H. Sicard, P. Lee, J. Ng, A. |
description | This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model. |
doi_str_mv | 10.1109/IECON.2012.6388839 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6388839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6388839</ieee_id><sourcerecordid>6388839</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5ab1809e6dac3cd0ee4bfdb175f0cee39d295c8d03a4b75279cd2927fe404ffb3</originalsourceid><addsrcrecordid>eNotkM1OAjEUhWvURMR5Ad30BQZv_6bTpSGIJAQ2LNiRTnuLowND2hLD2ytxVifnS76zOIQ8M5gwBuZ1MZuuVxMOjE8qUde1MDfkkclKCy45E7ekMLoeOjPmjoyYUqJUmm8fSJHSFwAwxqWoYES2KzxH29Ej5p8-ftND77Frj3vaB-r6zpd7m2j-jOeUMSYa-kgtTSfr0EUb8hUcbG77Iw3d5eplTLls0D-R-2C7hMWQY7J5n22mH-VyPV9M35ZlayCXyjasBoOVt044D4iyCb5hWgVwiMJ4bpSrPQgrG624Nu6PcB1QggyhEWPy8j_bIuLuFNuDjZfd8Iv4BVd5Vsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chaoui, H. ; Sicard, P. ; Lee, J. ; Ng, A.</creator><creatorcontrib>Chaoui, H. ; Sicard, P. ; Lee, J. ; Ng, A.</creatorcontrib><description>This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781467324199</identifier><identifier>ISBN: 1467324191</identifier><identifier>EISBN: 1467324213</identifier><identifier>EISBN: 9781467324205</identifier><identifier>EISBN: 9781467324212</identifier><identifier>EISBN: 1467324205</identifier><identifier>DOI: 10.1109/IECON.2012.6388839</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Analytical models ; Atmospheric modeling ; Industrial electronics ; Mathematical model ; Space vehicles ; Valves</subject><ispartof>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2619-2621</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6388839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6388839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaoui, H.</creatorcontrib><creatorcontrib>Sicard, P.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Ng, A.</creatorcontrib><title>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</title><title>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.</description><subject>Aerodynamics</subject><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Industrial electronics</subject><subject>Mathematical model</subject><subject>Space vehicles</subject><subject>Valves</subject><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><isbn>1467324213</isbn><isbn>9781467324205</isbn><isbn>9781467324212</isbn><isbn>1467324205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1OAjEUhWvURMR5Ad30BQZv_6bTpSGIJAQ2LNiRTnuLowND2hLD2ytxVifnS76zOIQ8M5gwBuZ1MZuuVxMOjE8qUde1MDfkkclKCy45E7ekMLoeOjPmjoyYUqJUmm8fSJHSFwAwxqWoYES2KzxH29Ej5p8-ftND77Frj3vaB-r6zpd7m2j-jOeUMSYa-kgtTSfr0EUb8hUcbG77Iw3d5eplTLls0D-R-2C7hMWQY7J5n22mH-VyPV9M35ZlayCXyjasBoOVt044D4iyCb5hWgVwiMJ4bpSrPQgrG624Nu6PcB1QggyhEWPy8j_bIuLuFNuDjZfd8Iv4BVd5Vsg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Chaoui, H.</creator><creator>Sicard, P.</creator><creator>Lee, J.</creator><creator>Ng, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</title><author>Chaoui, H. ; Sicard, P. ; Lee, J. ; Ng, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5ab1809e6dac3cd0ee4bfdb175f0cee39d295c8d03a4b75279cd2927fe404ffb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Industrial electronics</topic><topic>Mathematical model</topic><topic>Space vehicles</topic><topic>Valves</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaoui, H.</creatorcontrib><creatorcontrib>Sicard, P.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Ng, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaoui, H.</au><au>Sicard, P.</au><au>Lee, J.</au><au>Ng, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</atitle><btitle>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2012-10</date><risdate>2012</risdate><spage>2619</spage><epage>2621</epage><pages>2619-2621</pages><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><eisbn>1467324213</eisbn><eisbn>9781467324205</eisbn><eisbn>9781467324212</eisbn><eisbn>1467324205</eisbn><abstract>This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2012.6388839</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1553-572X |
ispartof | IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2619-2621 |
issn | 1553-572X |
language | eng |
recordid | cdi_ieee_primary_6388839 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerodynamics Analytical models Atmospheric modeling Industrial electronics Mathematical model Space vehicles Valves |
title | Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20modeling%20of%20cold-gas%20thrusters%20for%20a%20spacecraft%20formation%20flying%20test-bed&rft.btitle=IECON%202012%20-%2038th%20Annual%20Conference%20on%20IEEE%20Industrial%20Electronics%20Society&rft.au=Chaoui,%20H.&rft.date=2012-10&rft.spage=2619&rft.epage=2621&rft.pages=2619-2621&rft.issn=1553-572X&rft.isbn=9781467324199&rft.isbn_list=1467324191&rft_id=info:doi/10.1109/IECON.2012.6388839&rft_dat=%3Cieee_6IE%3E6388839%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467324213&rft.eisbn_list=9781467324205&rft.eisbn_list=9781467324212&rft.eisbn_list=1467324205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6388839&rfr_iscdi=true |