Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed

This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chaoui, H., Sicard, P., Lee, J., Ng, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2621
container_issue
container_start_page 2619
container_title
container_volume
creator Chaoui, H.
Sicard, P.
Lee, J.
Ng, A.
description This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.
doi_str_mv 10.1109/IECON.2012.6388839
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6388839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6388839</ieee_id><sourcerecordid>6388839</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5ab1809e6dac3cd0ee4bfdb175f0cee39d295c8d03a4b75279cd2927fe404ffb3</originalsourceid><addsrcrecordid>eNotkM1OAjEUhWvURMR5Ad30BQZv_6bTpSGIJAQ2LNiRTnuLowND2hLD2ytxVifnS76zOIQ8M5gwBuZ1MZuuVxMOjE8qUde1MDfkkclKCy45E7ekMLoeOjPmjoyYUqJUmm8fSJHSFwAwxqWoYES2KzxH29Ej5p8-ftND77Frj3vaB-r6zpd7m2j-jOeUMSYa-kgtTSfr0EUb8hUcbG77Iw3d5eplTLls0D-R-2C7hMWQY7J5n22mH-VyPV9M35ZlayCXyjasBoOVt044D4iyCb5hWgVwiMJ4bpSrPQgrG624Nu6PcB1QggyhEWPy8j_bIuLuFNuDjZfd8Iv4BVd5Vsg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chaoui, H. ; Sicard, P. ; Lee, J. ; Ng, A.</creator><creatorcontrib>Chaoui, H. ; Sicard, P. ; Lee, J. ; Ng, A.</creatorcontrib><description>This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781467324199</identifier><identifier>ISBN: 1467324191</identifier><identifier>EISBN: 1467324213</identifier><identifier>EISBN: 9781467324205</identifier><identifier>EISBN: 9781467324212</identifier><identifier>EISBN: 1467324205</identifier><identifier>DOI: 10.1109/IECON.2012.6388839</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerodynamics ; Analytical models ; Atmospheric modeling ; Industrial electronics ; Mathematical model ; Space vehicles ; Valves</subject><ispartof>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2619-2621</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6388839$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6388839$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaoui, H.</creatorcontrib><creatorcontrib>Sicard, P.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Ng, A.</creatorcontrib><title>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</title><title>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.</description><subject>Aerodynamics</subject><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Industrial electronics</subject><subject>Mathematical model</subject><subject>Space vehicles</subject><subject>Valves</subject><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><isbn>1467324213</isbn><isbn>9781467324205</isbn><isbn>9781467324212</isbn><isbn>1467324205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1OAjEUhWvURMR5Ad30BQZv_6bTpSGIJAQ2LNiRTnuLowND2hLD2ytxVifnS76zOIQ8M5gwBuZ1MZuuVxMOjE8qUde1MDfkkclKCy45E7ekMLoeOjPmjoyYUqJUmm8fSJHSFwAwxqWoYES2KzxH29Ej5p8-ftND77Frj3vaB-r6zpd7m2j-jOeUMSYa-kgtTSfr0EUb8hUcbG77Iw3d5eplTLls0D-R-2C7hMWQY7J5n22mH-VyPV9M35ZlayCXyjasBoOVt044D4iyCb5hWgVwiMJ4bpSrPQgrG624Nu6PcB1QggyhEWPy8j_bIuLuFNuDjZfd8Iv4BVd5Vsg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Chaoui, H.</creator><creator>Sicard, P.</creator><creator>Lee, J.</creator><creator>Ng, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</title><author>Chaoui, H. ; Sicard, P. ; Lee, J. ; Ng, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5ab1809e6dac3cd0ee4bfdb175f0cee39d295c8d03a4b75279cd2927fe404ffb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerodynamics</topic><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Industrial electronics</topic><topic>Mathematical model</topic><topic>Space vehicles</topic><topic>Valves</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaoui, H.</creatorcontrib><creatorcontrib>Sicard, P.</creatorcontrib><creatorcontrib>Lee, J.</creatorcontrib><creatorcontrib>Ng, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaoui, H.</au><au>Sicard, P.</au><au>Lee, J.</au><au>Ng, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed</atitle><btitle>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2012-10</date><risdate>2012</risdate><spage>2619</spage><epage>2621</epage><pages>2619-2621</pages><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><eisbn>1467324213</eisbn><eisbn>9781467324205</eisbn><eisbn>9781467324212</eisbn><eisbn>1467324205</eisbn><abstract>This work presents a neural network based modeling strategy to precisely identify the thrusts of cold-gas thrusters deployed in a nano-satellite experimental test-bed developed at the Canadian Space Agency (CSA). Eight thrusters are used to control the planar motion of an emulated free-floating spacecraft supported by air-bearing. Calibration experiments conducted on these thrusters revealed that the generated thrusts are highly nonlinear with respect to their inputs, the digital openings and the air pressure. Motivated by the learning and approximation capabilities of artificial neural networks (ANNs), an ANN is used to model the nonlinear thruster behavior using experimental data. The performance of the proposed strategy is satisfactory and clearly demonstrated by the resulting high precision model.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2012.6388839</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.2619-2621
issn 1553-572X
language eng
recordid cdi_ieee_primary_6388839
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerodynamics
Analytical models
Atmospheric modeling
Industrial electronics
Mathematical model
Space vehicles
Valves
title Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20modeling%20of%20cold-gas%20thrusters%20for%20a%20spacecraft%20formation%20flying%20test-bed&rft.btitle=IECON%202012%20-%2038th%20Annual%20Conference%20on%20IEEE%20Industrial%20Electronics%20Society&rft.au=Chaoui,%20H.&rft.date=2012-10&rft.spage=2619&rft.epage=2621&rft.pages=2619-2621&rft.issn=1553-572X&rft.isbn=9781467324199&rft.isbn_list=1467324191&rft_id=info:doi/10.1109/IECON.2012.6388839&rft_dat=%3Cieee_6IE%3E6388839%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467324213&rft.eisbn_list=9781467324205&rft.eisbn_list=9781467324212&rft.eisbn_list=1467324205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6388839&rfr_iscdi=true