Use of adaptive linear algorithms for very short-term prediction of wind turbine power output

The paper proposes an efficient method for very short-term prediction of wind turbine power output. The method, which models the turbine as a Hammerstein system, exploits an adaptive linear filtering algorithm. The performance of the proposed method is examined by implementation of two linear adapti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tohidian, M., Esmaili, A., Naghizadeh, R-A, Sadeghi, S. H. H., Nasiri, A., Reza, A. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1165
container_issue
container_start_page 1162
container_title
container_volume
creator Tohidian, M.
Esmaili, A.
Naghizadeh, R-A
Sadeghi, S. H. H.
Nasiri, A.
Reza, A. M.
description The paper proposes an efficient method for very short-term prediction of wind turbine power output. The method, which models the turbine as a Hammerstein system, exploits an adaptive linear filtering algorithm. The performance of the proposed method is examined by implementation of two linear adaptive algorithms, namely, least mean squares (LMS) and recursive least squares (RLS) filters. Using synthetic generation of turbine power output, it is shown that the RLS algorithm gives more accurate results with moderate computational burden as compared to the LMS algorithm and rival artificial neural networks.
doi_str_mv 10.1109/IECON.2012.6388608
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6388608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6388608</ieee_id><sourcerecordid>6388608</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d8fc10625924acb9d202ff2403ad64b432aa6a855b2594de2656736deea75c063</originalsourceid><addsrcrecordid>eNotkM9Kw0AYxFdUsNa8gF72BRJ3v_2T5Cil1kKxFwtepGyyX-xK2g2bTUvf3oo5DQPzG5gh5JGzjHNWPi_ns_V7BoxDpkVRaFZckXsudS5AAhfXJCnzYvS8LG_IhCslUpXD5x1J-v6HMcY5SKHZhHxteqS-ocaaLroj0tYd0ARq2m8fXNzte9r4QI8YzrTf-RDTiGFPu4DW1dH5wx98cgdL4xCqC0s7f8JA_RC7IT6Q28a0PSajTsnmdf4xe0tX68Vy9rJKHc9VTG3R1JxpUCVIU1elBQZNA5IJY7WspABjtCmUqi4RaRG0uqzTFtHkqmZaTMnTf69DxG0X3N6E83Z8R_wCXuVXyA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Use of adaptive linear algorithms for very short-term prediction of wind turbine power output</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tohidian, M. ; Esmaili, A. ; Naghizadeh, R-A ; Sadeghi, S. H. H. ; Nasiri, A. ; Reza, A. M.</creator><creatorcontrib>Tohidian, M. ; Esmaili, A. ; Naghizadeh, R-A ; Sadeghi, S. H. H. ; Nasiri, A. ; Reza, A. M.</creatorcontrib><description>The paper proposes an efficient method for very short-term prediction of wind turbine power output. The method, which models the turbine as a Hammerstein system, exploits an adaptive linear filtering algorithm. The performance of the proposed method is examined by implementation of two linear adaptive algorithms, namely, least mean squares (LMS) and recursive least squares (RLS) filters. Using synthetic generation of turbine power output, it is shown that the RLS algorithm gives more accurate results with moderate computational burden as compared to the LMS algorithm and rival artificial neural networks.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781467324199</identifier><identifier>ISBN: 1467324191</identifier><identifier>EISBN: 1467324213</identifier><identifier>EISBN: 9781467324205</identifier><identifier>EISBN: 9781467324212</identifier><identifier>EISBN: 1467324205</identifier><identifier>DOI: 10.1109/IECON.2012.6388608</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Least squares approximation ; Turbines ; Wind power generation</subject><ispartof>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.1162-1165</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6388608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6388608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tohidian, M.</creatorcontrib><creatorcontrib>Esmaili, A.</creatorcontrib><creatorcontrib>Naghizadeh, R-A</creatorcontrib><creatorcontrib>Sadeghi, S. H. H.</creatorcontrib><creatorcontrib>Nasiri, A.</creatorcontrib><creatorcontrib>Reza, A. M.</creatorcontrib><title>Use of adaptive linear algorithms for very short-term prediction of wind turbine power output</title><title>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>The paper proposes an efficient method for very short-term prediction of wind turbine power output. The method, which models the turbine as a Hammerstein system, exploits an adaptive linear filtering algorithm. The performance of the proposed method is examined by implementation of two linear adaptive algorithms, namely, least mean squares (LMS) and recursive least squares (RLS) filters. Using synthetic generation of turbine power output, it is shown that the RLS algorithm gives more accurate results with moderate computational burden as compared to the LMS algorithm and rival artificial neural networks.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Least squares approximation</subject><subject>Turbines</subject><subject>Wind power generation</subject><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><isbn>1467324213</isbn><isbn>9781467324205</isbn><isbn>9781467324212</isbn><isbn>1467324205</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM9Kw0AYxFdUsNa8gF72BRJ3v_2T5Cil1kKxFwtepGyyX-xK2g2bTUvf3oo5DQPzG5gh5JGzjHNWPi_ns_V7BoxDpkVRaFZckXsudS5AAhfXJCnzYvS8LG_IhCslUpXD5x1J-v6HMcY5SKHZhHxteqS-ocaaLroj0tYd0ARq2m8fXNzte9r4QI8YzrTf-RDTiGFPu4DW1dH5wx98cgdL4xCqC0s7f8JA_RC7IT6Q28a0PSajTsnmdf4xe0tX68Vy9rJKHc9VTG3R1JxpUCVIU1elBQZNA5IJY7WspABjtCmUqi4RaRG0uqzTFtHkqmZaTMnTf69DxG0X3N6E83Z8R_wCXuVXyA</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Tohidian, M.</creator><creator>Esmaili, A.</creator><creator>Naghizadeh, R-A</creator><creator>Sadeghi, S. H. H.</creator><creator>Nasiri, A.</creator><creator>Reza, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Use of adaptive linear algorithms for very short-term prediction of wind turbine power output</title><author>Tohidian, M. ; Esmaili, A. ; Naghizadeh, R-A ; Sadeghi, S. H. H. ; Nasiri, A. ; Reza, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d8fc10625924acb9d202ff2403ad64b432aa6a855b2594de2656736deea75c063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Least squares approximation</topic><topic>Turbines</topic><topic>Wind power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Tohidian, M.</creatorcontrib><creatorcontrib>Esmaili, A.</creatorcontrib><creatorcontrib>Naghizadeh, R-A</creatorcontrib><creatorcontrib>Sadeghi, S. H. H.</creatorcontrib><creatorcontrib>Nasiri, A.</creatorcontrib><creatorcontrib>Reza, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tohidian, M.</au><au>Esmaili, A.</au><au>Naghizadeh, R-A</au><au>Sadeghi, S. H. H.</au><au>Nasiri, A.</au><au>Reza, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Use of adaptive linear algorithms for very short-term prediction of wind turbine power output</atitle><btitle>IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2012-10</date><risdate>2012</risdate><spage>1162</spage><epage>1165</epage><pages>1162-1165</pages><issn>1553-572X</issn><isbn>9781467324199</isbn><isbn>1467324191</isbn><eisbn>1467324213</eisbn><eisbn>9781467324205</eisbn><eisbn>9781467324212</eisbn><eisbn>1467324205</eisbn><abstract>The paper proposes an efficient method for very short-term prediction of wind turbine power output. The method, which models the turbine as a Hammerstein system, exploits an adaptive linear filtering algorithm. The performance of the proposed method is examined by implementation of two linear adaptive algorithms, namely, least mean squares (LMS) and recursive least squares (RLS) filters. Using synthetic generation of turbine power output, it is shown that the RLS algorithm gives more accurate results with moderate computational burden as compared to the LMS algorithm and rival artificial neural networks.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2012.6388608</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 2012, p.1162-1165
issn 1553-572X
language eng
recordid cdi_ieee_primary_6388608
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Artificial neural networks
Least squares approximation
Turbines
Wind power generation
title Use of adaptive linear algorithms for very short-term prediction of wind turbine power output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Use%20of%20adaptive%20linear%20algorithms%20for%20very%20short-term%20prediction%20of%20wind%20turbine%20power%20output&rft.btitle=IECON%202012%20-%2038th%20Annual%20Conference%20on%20IEEE%20Industrial%20Electronics%20Society&rft.au=Tohidian,%20M.&rft.date=2012-10&rft.spage=1162&rft.epage=1165&rft.pages=1162-1165&rft.issn=1553-572X&rft.isbn=9781467324199&rft.isbn_list=1467324191&rft_id=info:doi/10.1109/IECON.2012.6388608&rft_dat=%3Cieee_6IE%3E6388608%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467324213&rft.eisbn_list=9781467324205&rft.eisbn_list=9781467324212&rft.eisbn_list=1467324205&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6388608&rfr_iscdi=true