Learning hierarchical representation with sparsity for RGB-D object recognition
RGB-D sensor has gained its popularity in the study of object recognition for its low cost as well as its capability to provide synchronized RGB and depth images. Thus, researchers have proposed new methods to extract features from RGB-D data. On the other hand, learning-based feature representation...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3016 |
---|---|
container_issue | |
container_start_page | 3011 |
container_title | |
container_volume | |
creator | Kuan-Ting Yu Shih-Huan Tseng Li-Chen Fu |
description | RGB-D sensor has gained its popularity in the study of object recognition for its low cost as well as its capability to provide synchronized RGB and depth images. Thus, researchers have proposed new methods to extract features from RGB-D data. On the other hand, learning-based feature representation is a promising approach for 2D image classification. By exploiting sparsity in 2D image signals, we can learn image representation instead of using hand-crafted local descriptors like SIFT or HoG. This framework inspired us to learn features from RGB-D data. Our work focuses on two goals. First, we propose a novel Hierarchical Sparse Shape Descriptor (HSSD) to form learning-based representation for 3D shapes. To achieve this, we analyze several 3D feature extraction techniques and propose a unified view of them. Then, we learn hierarchical shape representation with sparse coding, max pooling and local grouping. Second, we investigate whether RGB and depth information should be fused at lower level or higher level. Experimental results show that, first, our HSSD algorithm can learn shape dictionary and provide shape cues in addition to the 2D cues. Using the proposed HSSD algorithm achieves 84% accuracy on a household RGB-D object dataset and outperforms a widely used VFH shape feature by 13%. Second, fusing RGB-D information at lower level does not improve recognition performance. |
doi_str_mv | 10.1109/IROS.2012.6386175 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6386175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6386175</ieee_id><sourcerecordid>6386175</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ae8a9d0e02bd9c485070977eddee8d4b5e88dc282f16fce5c57bc1239fc13a403</originalsourceid><addsrcrecordid>eNo9kF1LwzAYheMXOOd-gHiTP9CaN2m-LnXTORgMpl6PNH27Zsy2pAHZv3fi9OpcPIeHwyHkDlgOwOzDYr16yzkDnithFGh5RiZWGyiUFqCFhHMy4iBFxoxSF-TmD2hx-Q-kuSaTYdgxxo5OJcCOyGqJLrah3dImYHTRN8G7PY3YRxywTS6FrqVfITV06F0cQjrQuot0PX_KZrQrd-jTse27bRt-qrfkqnb7ASenHJOPl-f36Wu2XM0X08dlFo7bU-bQOFsxZLysrC-MZJpZrbGqEE1VlBKNqTw3vAZVe5Re6tIDF7b2IFzBxJjc_3oDIm76GD5dPGxO34hvHwlU0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning hierarchical representation with sparsity for RGB-D object recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kuan-Ting Yu ; Shih-Huan Tseng ; Li-Chen Fu</creator><creatorcontrib>Kuan-Ting Yu ; Shih-Huan Tseng ; Li-Chen Fu</creatorcontrib><description>RGB-D sensor has gained its popularity in the study of object recognition for its low cost as well as its capability to provide synchronized RGB and depth images. Thus, researchers have proposed new methods to extract features from RGB-D data. On the other hand, learning-based feature representation is a promising approach for 2D image classification. By exploiting sparsity in 2D image signals, we can learn image representation instead of using hand-crafted local descriptors like SIFT or HoG. This framework inspired us to learn features from RGB-D data. Our work focuses on two goals. First, we propose a novel Hierarchical Sparse Shape Descriptor (HSSD) to form learning-based representation for 3D shapes. To achieve this, we analyze several 3D feature extraction techniques and propose a unified view of them. Then, we learn hierarchical shape representation with sparse coding, max pooling and local grouping. Second, we investigate whether RGB and depth information should be fused at lower level or higher level. Experimental results show that, first, our HSSD algorithm can learn shape dictionary and provide shape cues in addition to the 2D cues. Using the proposed HSSD algorithm achieves 84% accuracy on a household RGB-D object dataset and outperforms a widely used VFH shape feature by 13%. Second, fusing RGB-D information at lower level does not improve recognition performance.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6386175</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Dictionaries ; Encoding ; Feature extraction ; Filter banks ; Histograms ; Shape</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.3011-3016</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6386175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6386175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuan-Ting Yu</creatorcontrib><creatorcontrib>Shih-Huan Tseng</creatorcontrib><creatorcontrib>Li-Chen Fu</creatorcontrib><title>Learning hierarchical representation with sparsity for RGB-D object recognition</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>RGB-D sensor has gained its popularity in the study of object recognition for its low cost as well as its capability to provide synchronized RGB and depth images. Thus, researchers have proposed new methods to extract features from RGB-D data. On the other hand, learning-based feature representation is a promising approach for 2D image classification. By exploiting sparsity in 2D image signals, we can learn image representation instead of using hand-crafted local descriptors like SIFT or HoG. This framework inspired us to learn features from RGB-D data. Our work focuses on two goals. First, we propose a novel Hierarchical Sparse Shape Descriptor (HSSD) to form learning-based representation for 3D shapes. To achieve this, we analyze several 3D feature extraction techniques and propose a unified view of them. Then, we learn hierarchical shape representation with sparse coding, max pooling and local grouping. Second, we investigate whether RGB and depth information should be fused at lower level or higher level. Experimental results show that, first, our HSSD algorithm can learn shape dictionary and provide shape cues in addition to the 2D cues. Using the proposed HSSD algorithm achieves 84% accuracy on a household RGB-D object dataset and outperforms a widely used VFH shape feature by 13%. Second, fusing RGB-D information at lower level does not improve recognition performance.</description><subject>Accuracy</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Filter banks</subject><subject>Histograms</subject><subject>Shape</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYheMXOOd-gHiTP9CaN2m-LnXTORgMpl6PNH27Zsy2pAHZv3fi9OpcPIeHwyHkDlgOwOzDYr16yzkDnithFGh5RiZWGyiUFqCFhHMy4iBFxoxSF-TmD2hx-Q-kuSaTYdgxxo5OJcCOyGqJLrah3dImYHTRN8G7PY3YRxywTS6FrqVfITV06F0cQjrQuot0PX_KZrQrd-jTse27bRt-qrfkqnb7ASenHJOPl-f36Wu2XM0X08dlFo7bU-bQOFsxZLysrC-MZJpZrbGqEE1VlBKNqTw3vAZVe5Re6tIDF7b2IFzBxJjc_3oDIm76GD5dPGxO34hvHwlU0g</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kuan-Ting Yu</creator><creator>Shih-Huan Tseng</creator><creator>Li-Chen Fu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Learning hierarchical representation with sparsity for RGB-D object recognition</title><author>Kuan-Ting Yu ; Shih-Huan Tseng ; Li-Chen Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ae8a9d0e02bd9c485070977eddee8d4b5e88dc282f16fce5c57bc1239fc13a403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Filter banks</topic><topic>Histograms</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuan-Ting Yu</creatorcontrib><creatorcontrib>Shih-Huan Tseng</creatorcontrib><creatorcontrib>Li-Chen Fu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuan-Ting Yu</au><au>Shih-Huan Tseng</au><au>Li-Chen Fu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning hierarchical representation with sparsity for RGB-D object recognition</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>3011</spage><epage>3016</epage><pages>3011-3016</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>RGB-D sensor has gained its popularity in the study of object recognition for its low cost as well as its capability to provide synchronized RGB and depth images. Thus, researchers have proposed new methods to extract features from RGB-D data. On the other hand, learning-based feature representation is a promising approach for 2D image classification. By exploiting sparsity in 2D image signals, we can learn image representation instead of using hand-crafted local descriptors like SIFT or HoG. This framework inspired us to learn features from RGB-D data. Our work focuses on two goals. First, we propose a novel Hierarchical Sparse Shape Descriptor (HSSD) to form learning-based representation for 3D shapes. To achieve this, we analyze several 3D feature extraction techniques and propose a unified view of them. Then, we learn hierarchical shape representation with sparse coding, max pooling and local grouping. Second, we investigate whether RGB and depth information should be fused at lower level or higher level. Experimental results show that, first, our HSSD algorithm can learn shape dictionary and provide shape cues in addition to the 2D cues. Using the proposed HSSD algorithm achieves 84% accuracy on a household RGB-D object dataset and outperforms a widely used VFH shape feature by 13%. Second, fusing RGB-D information at lower level does not improve recognition performance.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6386175</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.3011-3016 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6386175 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Dictionaries Encoding Feature extraction Filter banks Histograms Shape |
title | Learning hierarchical representation with sparsity for RGB-D object recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20hierarchical%20representation%20with%20sparsity%20for%20RGB-D%20object%20recognition&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Kuan-Ting%20Yu&rft.date=2012-10&rft.spage=3011&rft.epage=3016&rft.pages=3011-3016&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6386175&rft_dat=%3Cieee_6IE%3E6386175%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6386175&rfr_iscdi=true |