Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images
In this paper we present two real-time methods for estimating surface normals from organized point cloud data. The proposed algorithms use integral images to perform highly efficient border- and depth-dependent smoothing and covariance estimation. We show that this approach makes it possible to obta...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2689 |
---|---|
container_issue | |
container_start_page | 2684 |
container_title | |
container_volume | |
creator | Holzer, S. Rusu, R. B. Dixon, M. Gedikli, S. Navab, N. |
description | In this paper we present two real-time methods for estimating surface normals from organized point cloud data. The proposed algorithms use integral images to perform highly efficient border- and depth-dependent smoothing and covariance estimation. We show that this approach makes it possible to obtain robust surface normals from large point clouds at high frame rates and therefore, can be used in real-time computer vision algorithms that make use of Kinect-like data. |
doi_str_mv | 10.1109/IROS.2012.6385999 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385999</ieee_id><sourcerecordid>6385999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-a84fe5dda0d414850c28e81b7a3c56f72a21e4e2ce1c01b3921d87824b876a453</originalsourceid><addsrcrecordid>eNo9kMlqwzAQhtUNmqZ5gNKLXsCpRrIs6RhCNwgEupyDYo0dFccKklNooe9eQdKeBr5_GfgJuQE2BWDm7vll-TrlDPi0EloaY07IxCgNZaUEKCHhlIw4SFEwXVVn5OpPUOL8X5D6kkxS-mCM5c5KgBmRn5mzu8F_Iu3Rt5t1iJsQHE3YYT340NMmRBrRdsXgt0jTPja2zuYQt7ajmDK1B18MWxpia3v_jY7ugu8HWndh76izg6X75PuWZohtzMkcazFdk4vGdgknxzsm7w_3b_OnYrF8fJ7PFkXNtRkKq8sGpXOWuRJKLVnGqGGtrKhl1ShuOWCJvEaoGayF4eC00rxca1XZUooxuT30ekRc7WL-Hr9WxyXFL43sZbI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Holzer, S. ; Rusu, R. B. ; Dixon, M. ; Gedikli, S. ; Navab, N.</creator><creatorcontrib>Holzer, S. ; Rusu, R. B. ; Dixon, M. ; Gedikli, S. ; Navab, N.</creatorcontrib><description>In this paper we present two real-time methods for estimating surface normals from organized point cloud data. The proposed algorithms use integral images to perform highly efficient border- and depth-dependent smoothing and covariance estimation. We show that this approach makes it possible to obtain robust surface normals from large point clouds at high frame rates and therefore, can be used in real-time computer vision algorithms that make use of Kinect-like data.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385999</identifier><language>eng</language><publisher>IEEE</publisher><subject>Covariance matrix ; Estimation ; Noise ; Sensors ; Smoothing methods ; Surface treatment ; Vectors</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2684-2689</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-a84fe5dda0d414850c28e81b7a3c56f72a21e4e2ce1c01b3921d87824b876a453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holzer, S.</creatorcontrib><creatorcontrib>Rusu, R. B.</creatorcontrib><creatorcontrib>Dixon, M.</creatorcontrib><creatorcontrib>Gedikli, S.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><title>Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>In this paper we present two real-time methods for estimating surface normals from organized point cloud data. The proposed algorithms use integral images to perform highly efficient border- and depth-dependent smoothing and covariance estimation. We show that this approach makes it possible to obtain robust surface normals from large point clouds at high frame rates and therefore, can be used in real-time computer vision algorithms that make use of Kinect-like data.</description><subject>Covariance matrix</subject><subject>Estimation</subject><subject>Noise</subject><subject>Sensors</subject><subject>Smoothing methods</subject><subject>Surface treatment</subject><subject>Vectors</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMlqwzAQhtUNmqZ5gNKLXsCpRrIs6RhCNwgEupyDYo0dFccKklNooe9eQdKeBr5_GfgJuQE2BWDm7vll-TrlDPi0EloaY07IxCgNZaUEKCHhlIw4SFEwXVVn5OpPUOL8X5D6kkxS-mCM5c5KgBmRn5mzu8F_Iu3Rt5t1iJsQHE3YYT340NMmRBrRdsXgt0jTPja2zuYQt7ajmDK1B18MWxpia3v_jY7ugu8HWndh76izg6X75PuWZohtzMkcazFdk4vGdgknxzsm7w_3b_OnYrF8fJ7PFkXNtRkKq8sGpXOWuRJKLVnGqGGtrKhl1ShuOWCJvEaoGayF4eC00rxca1XZUooxuT30ekRc7WL-Hr9WxyXFL43sZbI</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Holzer, S.</creator><creator>Rusu, R. B.</creator><creator>Dixon, M.</creator><creator>Gedikli, S.</creator><creator>Navab, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images</title><author>Holzer, S. ; Rusu, R. B. ; Dixon, M. ; Gedikli, S. ; Navab, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-a84fe5dda0d414850c28e81b7a3c56f72a21e4e2ce1c01b3921d87824b876a453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Covariance matrix</topic><topic>Estimation</topic><topic>Noise</topic><topic>Sensors</topic><topic>Smoothing methods</topic><topic>Surface treatment</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Holzer, S.</creatorcontrib><creatorcontrib>Rusu, R. B.</creatorcontrib><creatorcontrib>Dixon, M.</creatorcontrib><creatorcontrib>Gedikli, S.</creatorcontrib><creatorcontrib>Navab, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holzer, S.</au><au>Rusu, R. B.</au><au>Dixon, M.</au><au>Gedikli, S.</au><au>Navab, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>2684</spage><epage>2689</epage><pages>2684-2689</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>In this paper we present two real-time methods for estimating surface normals from organized point cloud data. The proposed algorithms use integral images to perform highly efficient border- and depth-dependent smoothing and covariance estimation. We show that this approach makes it possible to obtain robust surface normals from large point clouds at high frame rates and therefore, can be used in real-time computer vision algorithms that make use of Kinect-like data.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385999</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2684-2689 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6385999 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Covariance matrix Estimation Noise Sensors Smoothing methods Surface treatment Vectors |
title | Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20neighborhood%20selection%20for%20real-time%20surface%20normal%20estimation%20from%20organized%20point%20cloud%20data%20using%20integral%20images&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Holzer,%20S.&rft.date=2012-10&rft.spage=2684&rft.epage=2689&rft.pages=2684-2689&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385999&rft_dat=%3Cieee_6IE%3E6385999%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385999&rfr_iscdi=true |