State estimation for highly dynamic flying systems using key frame odometry with varying time delays

System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schmid, K., Ruess, F., Suppa, M., Burschka, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3004
container_issue
container_start_page 2997
container_title
container_volume
creator Schmid, K.
Ruess, F.
Suppa, M.
Burschka, D.
description System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computational resources the processing of exteroceptive sensor data often introduces time delays which have to be considered in the sensor data fusion process. These time delays are especially critical in the estimation of system velocity. In this paper we present a state estimation framework fusing an INS with time delayed, relative exteroceptive sensor measurements. We evaluate its performance for a highly dynamic flight system trajectory including a flip. The evolution of velocity and position errors for varying measurement frequencies from 15Hz to 1Hz and time delays up to 1s is shown in Monte Carlo simulations. The filter algorithm with key frame based odometry permits an optimal, local drift free navigation while still being computationally tractable on small onboard computers. Finally, we present the results of the algorithm applied to a real quadrotor by flying from inside a house out through the window.
doi_str_mv 10.1109/IROS.2012.6385969
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385969</ieee_id><sourcerecordid>6385969</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-670ab5252d50c40535b9d1e0ff2b3bf9eca99422405a222652156969eebd0dfa3</originalsourceid><addsrcrecordid>eNo9kNtKxDAUReMNHMd-gPiSH2jNpUmbRxkcHRgYcPR5SJuTabQXaaKSv7fq6NPhsDYL9kboipKMUqJuVo-bbcYIZZnkpVBSHaFEFSXNZcFpwQU9RjNGBU9JKeUJuvgDBT_9B6I8R4n3L4SQySk5VTNktkEHwOCD63RwQ4_tMOLG7Zs2YhN73bka2za6fo999AE6j9_99_cKEdtRd4AHM3QQxog_XWjwhx5_0pMQsIFWR3-JzqxuPSSHO0fPy7unxUO63tyvFrfr1DFahlQWRFeCCWYEqXMiuKiUoUCsZRWvrIJaK5UzNiHNGJNi6iWnKQAqQ4zVfI6uf70OAHZv41RpjLvDYPwLeqtcLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>State estimation for highly dynamic flying systems using key frame odometry with varying time delays</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schmid, K. ; Ruess, F. ; Suppa, M. ; Burschka, D.</creator><creatorcontrib>Schmid, K. ; Ruess, F. ; Suppa, M. ; Burschka, D.</creatorcontrib><description>System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computational resources the processing of exteroceptive sensor data often introduces time delays which have to be considered in the sensor data fusion process. These time delays are especially critical in the estimation of system velocity. In this paper we present a state estimation framework fusing an INS with time delayed, relative exteroceptive sensor measurements. We evaluate its performance for a highly dynamic flight system trajectory including a flip. The evolution of velocity and position errors for varying measurement frequencies from 15Hz to 1Hz and time delays up to 1s is shown in Monte Carlo simulations. The filter algorithm with key frame based odometry permits an optimal, local drift free navigation while still being computationally tractable on small onboard computers. Finally, we present the results of the algorithm applied to a real quadrotor by flying from inside a house out through the window.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385969</identifier><language>eng</language><publisher>IEEE</publisher><subject>Delay effects ; Frequency measurement ; Noise ; Sensor systems ; Time measurement ; Vectors</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2997-3004</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schmid, K.</creatorcontrib><creatorcontrib>Ruess, F.</creatorcontrib><creatorcontrib>Suppa, M.</creatorcontrib><creatorcontrib>Burschka, D.</creatorcontrib><title>State estimation for highly dynamic flying systems using key frame odometry with varying time delays</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computational resources the processing of exteroceptive sensor data often introduces time delays which have to be considered in the sensor data fusion process. These time delays are especially critical in the estimation of system velocity. In this paper we present a state estimation framework fusing an INS with time delayed, relative exteroceptive sensor measurements. We evaluate its performance for a highly dynamic flight system trajectory including a flip. The evolution of velocity and position errors for varying measurement frequencies from 15Hz to 1Hz and time delays up to 1s is shown in Monte Carlo simulations. The filter algorithm with key frame based odometry permits an optimal, local drift free navigation while still being computationally tractable on small onboard computers. Finally, we present the results of the algorithm applied to a real quadrotor by flying from inside a house out through the window.</description><subject>Delay effects</subject><subject>Frequency measurement</subject><subject>Noise</subject><subject>Sensor systems</subject><subject>Time measurement</subject><subject>Vectors</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNtKxDAUReMNHMd-gPiSH2jNpUmbRxkcHRgYcPR5SJuTabQXaaKSv7fq6NPhsDYL9kboipKMUqJuVo-bbcYIZZnkpVBSHaFEFSXNZcFpwQU9RjNGBU9JKeUJuvgDBT_9B6I8R4n3L4SQySk5VTNktkEHwOCD63RwQ4_tMOLG7Zs2YhN73bka2za6fo999AE6j9_99_cKEdtRd4AHM3QQxog_XWjwhx5_0pMQsIFWR3-JzqxuPSSHO0fPy7unxUO63tyvFrfr1DFahlQWRFeCCWYEqXMiuKiUoUCsZRWvrIJaK5UzNiHNGJNi6iWnKQAqQ4zVfI6uf70OAHZv41RpjLvDYPwLeqtcLw</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Schmid, K.</creator><creator>Ruess, F.</creator><creator>Suppa, M.</creator><creator>Burschka, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>State estimation for highly dynamic flying systems using key frame odometry with varying time delays</title><author>Schmid, K. ; Ruess, F. ; Suppa, M. ; Burschka, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-670ab5252d50c40535b9d1e0ff2b3bf9eca99422405a222652156969eebd0dfa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Delay effects</topic><topic>Frequency measurement</topic><topic>Noise</topic><topic>Sensor systems</topic><topic>Time measurement</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Schmid, K.</creatorcontrib><creatorcontrib>Ruess, F.</creatorcontrib><creatorcontrib>Suppa, M.</creatorcontrib><creatorcontrib>Burschka, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schmid, K.</au><au>Ruess, F.</au><au>Suppa, M.</au><au>Burschka, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>State estimation for highly dynamic flying systems using key frame odometry with varying time delays</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>2997</spage><epage>3004</epage><pages>2997-3004</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>System state estimation is an essential part for robot navigation and control. A combination of Inertial Navigation Systems (INS) and further exteroceptive sensors such as cameras or laser scanners is widely used. On small robotic systems with limitations in payload, power consumption and computational resources the processing of exteroceptive sensor data often introduces time delays which have to be considered in the sensor data fusion process. These time delays are especially critical in the estimation of system velocity. In this paper we present a state estimation framework fusing an INS with time delayed, relative exteroceptive sensor measurements. We evaluate its performance for a highly dynamic flight system trajectory including a flip. The evolution of velocity and position errors for varying measurement frequencies from 15Hz to 1Hz and time delays up to 1s is shown in Monte Carlo simulations. The filter algorithm with key frame based odometry permits an optimal, local drift free navigation while still being computationally tractable on small onboard computers. Finally, we present the results of the algorithm applied to a real quadrotor by flying from inside a house out through the window.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385969</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2997-3004
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6385969
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Delay effects
Frequency measurement
Noise
Sensor systems
Time measurement
Vectors
title State estimation for highly dynamic flying systems using key frame odometry with varying time delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=State%20estimation%20for%20highly%20dynamic%20flying%20systems%20using%20key%20frame%20odometry%20with%20varying%20time%20delays&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Schmid,%20K.&rft.date=2012-10&rft.spage=2997&rft.epage=3004&rft.pages=2997-3004&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385969&rft_dat=%3Cieee_6IE%3E6385969%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385969&rfr_iscdi=true