Vision-based hyper-real-time object tracker for robotic applications

Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is draw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kolarow, A., Brauckmann, M., Eisenbach, M., Schenk, K., Einhorn, E., Debes, K., Gross, H-M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2115
container_issue
container_start_page 2108
container_title
container_volume
creator Kolarow, A.
Brauckmann, M.
Eisenbach, M.
Schenk, K.
Einhorn, E.
Debes, K.
Gross, H-M
description Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.
doi_str_mv 10.1109/IROS.2012.6385843
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385843</ieee_id><sourcerecordid>6385843</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e40593236bdf779e69766bbbd73508636931aea91b3e6c0825248cbdb22d1e093</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM1LopR8AGKTH3Dw9Y1fS1QKVKpUide2spMb4ZKSyMmmf08kCqtZHM3RaBi7AVEACHe3etm8FlKALDRaZUs8YZkzFkptEAwqOGUzCQq5sFqfsas_YPD8Hyh7ybJh2AkhJqdGcDP28BGH2H3z4Aeq889DT4kn8i0f457yLuyoGvMx-eqLUt50KU9d6MZY5b7v21j5cSoP1-yi8e1A2THn7P1x-bZ45uvN02pxv-YRjBo5lUI5lKhD3RjjSDujdQihnvZPs1E7BE_eQUDSlbBSydJWoQ5S1kDC4Zzd_nojEW37FPc-HbbHQ_AHjFhPbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vision-based hyper-real-time object tracker for robotic applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kolarow, A. ; Brauckmann, M. ; Eisenbach, M. ; Schenk, K. ; Einhorn, E. ; Debes, K. ; Gross, H-M</creator><creatorcontrib>Kolarow, A. ; Brauckmann, M. ; Eisenbach, M. ; Schenk, K. ; Einhorn, E. ; Debes, K. ; Gross, H-M</creatorcontrib><description>Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385843</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image color analysis ; Optimized production technology ; Real-time systems ; Robots ; Search problems</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2108-2115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kolarow, A.</creatorcontrib><creatorcontrib>Brauckmann, M.</creatorcontrib><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Schenk, K.</creatorcontrib><creatorcontrib>Einhorn, E.</creatorcontrib><creatorcontrib>Debes, K.</creatorcontrib><creatorcontrib>Gross, H-M</creatorcontrib><title>Vision-based hyper-real-time object tracker for robotic applications</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.</description><subject>Image color analysis</subject><subject>Optimized production technology</subject><subject>Real-time systems</subject><subject>Robots</subject><subject>Search problems</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM1LopR8AGKTH3Dw9Y1fS1QKVKpUide2spMb4ZKSyMmmf08kCqtZHM3RaBi7AVEACHe3etm8FlKALDRaZUs8YZkzFkptEAwqOGUzCQq5sFqfsas_YPD8Hyh7ybJh2AkhJqdGcDP28BGH2H3z4Aeq889DT4kn8i0f457yLuyoGvMx-eqLUt50KU9d6MZY5b7v21j5cSoP1-yi8e1A2THn7P1x-bZ45uvN02pxv-YRjBo5lUI5lKhD3RjjSDujdQihnvZPs1E7BE_eQUDSlbBSydJWoQ5S1kDC4Zzd_nojEW37FPc-HbbHQ_AHjFhPbQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kolarow, A.</creator><creator>Brauckmann, M.</creator><creator>Eisenbach, M.</creator><creator>Schenk, K.</creator><creator>Einhorn, E.</creator><creator>Debes, K.</creator><creator>Gross, H-M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Vision-based hyper-real-time object tracker for robotic applications</title><author>Kolarow, A. ; Brauckmann, M. ; Eisenbach, M. ; Schenk, K. ; Einhorn, E. ; Debes, K. ; Gross, H-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e40593236bdf779e69766bbbd73508636931aea91b3e6c0825248cbdb22d1e093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Image color analysis</topic><topic>Optimized production technology</topic><topic>Real-time systems</topic><topic>Robots</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kolarow, A.</creatorcontrib><creatorcontrib>Brauckmann, M.</creatorcontrib><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Schenk, K.</creatorcontrib><creatorcontrib>Einhorn, E.</creatorcontrib><creatorcontrib>Debes, K.</creatorcontrib><creatorcontrib>Gross, H-M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kolarow, A.</au><au>Brauckmann, M.</au><au>Eisenbach, M.</au><au>Schenk, K.</au><au>Einhorn, E.</au><au>Debes, K.</au><au>Gross, H-M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-based hyper-real-time object tracker for robotic applications</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>2108</spage><epage>2115</epage><pages>2108-2115</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385843</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2108-2115
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6385843
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image color analysis
Optimized production technology
Real-time systems
Robots
Search problems
title Vision-based hyper-real-time object tracker for robotic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-based%20hyper-real-time%20object%20tracker%20for%20robotic%20applications&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Kolarow,%20A.&rft.date=2012-10&rft.spage=2108&rft.epage=2115&rft.pages=2108-2115&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385843&rft_dat=%3Cieee_6IE%3E6385843%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385843&rfr_iscdi=true