Vision-based hyper-real-time object tracker for robotic applications
Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is draw...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2115 |
---|---|
container_issue | |
container_start_page | 2108 |
container_title | |
container_volume | |
creator | Kolarow, A. Brauckmann, M. Eisenbach, M. Schenk, K. Einhorn, E. Debes, K. Gross, H-M |
description | Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks. |
doi_str_mv | 10.1109/IROS.2012.6385843 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385843</ieee_id><sourcerecordid>6385843</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e40593236bdf779e69766bbbd73508636931aea91b3e6c0825248cbdb22d1e093</originalsourceid><addsrcrecordid>eNo9kMtOwzAURM1LopR8AGKTH3Dw9Y1fS1QKVKpUide2spMb4ZKSyMmmf08kCqtZHM3RaBi7AVEACHe3etm8FlKALDRaZUs8YZkzFkptEAwqOGUzCQq5sFqfsas_YPD8Hyh7ybJh2AkhJqdGcDP28BGH2H3z4Aeq889DT4kn8i0f457yLuyoGvMx-eqLUt50KU9d6MZY5b7v21j5cSoP1-yi8e1A2THn7P1x-bZ45uvN02pxv-YRjBo5lUI5lKhD3RjjSDujdQihnvZPs1E7BE_eQUDSlbBSydJWoQ5S1kDC4Zzd_nojEW37FPc-HbbHQ_AHjFhPbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vision-based hyper-real-time object tracker for robotic applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kolarow, A. ; Brauckmann, M. ; Eisenbach, M. ; Schenk, K. ; Einhorn, E. ; Debes, K. ; Gross, H-M</creator><creatorcontrib>Kolarow, A. ; Brauckmann, M. ; Eisenbach, M. ; Schenk, K. ; Einhorn, E. ; Debes, K. ; Gross, H-M</creatorcontrib><description>Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385843</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image color analysis ; Optimized production technology ; Real-time systems ; Robots ; Search problems</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2108-2115</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385843$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385843$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kolarow, A.</creatorcontrib><creatorcontrib>Brauckmann, M.</creatorcontrib><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Schenk, K.</creatorcontrib><creatorcontrib>Einhorn, E.</creatorcontrib><creatorcontrib>Debes, K.</creatorcontrib><creatorcontrib>Gross, H-M</creatorcontrib><title>Vision-based hyper-real-time object tracker for robotic applications</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.</description><subject>Image color analysis</subject><subject>Optimized production technology</subject><subject>Real-time systems</subject><subject>Robots</subject><subject>Search problems</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURM1LopR8AGKTH3Dw9Y1fS1QKVKpUide2spMb4ZKSyMmmf08kCqtZHM3RaBi7AVEACHe3etm8FlKALDRaZUs8YZkzFkptEAwqOGUzCQq5sFqfsas_YPD8Hyh7ybJh2AkhJqdGcDP28BGH2H3z4Aeq889DT4kn8i0f457yLuyoGvMx-eqLUt50KU9d6MZY5b7v21j5cSoP1-yi8e1A2THn7P1x-bZ45uvN02pxv-YRjBo5lUI5lKhD3RjjSDujdQihnvZPs1E7BE_eQUDSlbBSydJWoQ5S1kDC4Zzd_nojEW37FPc-HbbHQ_AHjFhPbQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Kolarow, A.</creator><creator>Brauckmann, M.</creator><creator>Eisenbach, M.</creator><creator>Schenk, K.</creator><creator>Einhorn, E.</creator><creator>Debes, K.</creator><creator>Gross, H-M</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Vision-based hyper-real-time object tracker for robotic applications</title><author>Kolarow, A. ; Brauckmann, M. ; Eisenbach, M. ; Schenk, K. ; Einhorn, E. ; Debes, K. ; Gross, H-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e40593236bdf779e69766bbbd73508636931aea91b3e6c0825248cbdb22d1e093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Image color analysis</topic><topic>Optimized production technology</topic><topic>Real-time systems</topic><topic>Robots</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Kolarow, A.</creatorcontrib><creatorcontrib>Brauckmann, M.</creatorcontrib><creatorcontrib>Eisenbach, M.</creatorcontrib><creatorcontrib>Schenk, K.</creatorcontrib><creatorcontrib>Einhorn, E.</creatorcontrib><creatorcontrib>Debes, K.</creatorcontrib><creatorcontrib>Gross, H-M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kolarow, A.</au><au>Brauckmann, M.</au><au>Eisenbach, M.</au><au>Schenk, K.</au><au>Einhorn, E.</au><au>Debes, K.</au><au>Gross, H-M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-based hyper-real-time object tracker for robotic applications</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>2108</spage><epage>2115</epage><pages>2108-2115</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>Fast vision-based object and person tracking is important for various applications in mobile robotics and Human-Robot Interaction. While current state-of-the-art methods use descriptive features for visual tracking, we propose a novel approach using a sparse template based feature set, which is drawn from homogeneous regions on the object to be tracked. Using only a small number of simple features, without complex descriptors in combination with logarithmic-search, the tracker performs at hyper-real-time on HD-images without the use of parallelized hardware. Detailed benchmark experiments show that it outperforms most other state-of-the-art approaches for real-time object and person tracking in quality and runtime. In the experiments we also show the robustness of the tracker and evaluate the effects of different initialization methods, feature sets, and parameters on the tracker. Although we focus on the scenario of person and object tracking in robot applications, the proposed tracker can be used for a variety of other tracking tasks.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385843</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2108-2115 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6385843 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image color analysis Optimized production technology Real-time systems Robots Search problems |
title | Vision-based hyper-real-time object tracker for robotic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-based%20hyper-real-time%20object%20tracker%20for%20robotic%20applications&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Kolarow,%20A.&rft.date=2012-10&rft.spage=2108&rft.epage=2115&rft.pages=2108-2115&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385843&rft_dat=%3Cieee_6IE%3E6385843%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385843&rfr_iscdi=true |