Accurate evaluation of a distance function for optimization-based motion planning
We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a n...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1518 |
---|---|
container_issue | |
container_start_page | 1513 |
container_title | |
container_volume | |
creator | Youngeun Lee Lengagne, S. Kheddar, A. Kim, Y. J. |
description | We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability. |
doi_str_mv | 10.1109/IROS.2012.6385741 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385741</ieee_id><sourcerecordid>oai_HAL_lirmm_00778524v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h277t-a972a7ed16c1930769e5fc0ccfe79a05c3b57e3918e2a4d4350b998c320e02a3</originalsourceid><addsrcrecordid>eNo9kEtrAjEUhdMX1Fp_QOkm-zL2JpnkTpYibRUEaet-uGYyNWUeMg-h_fUVta4OnO_jLA5jDwLGQoB9nn8sP8cShBwblWiMxQUbWUxEbFAJVFpcsoEUWkWQGHPF7v4Bqusz0MktG7XtNwDsN40SdsDeJ871DXWe-x0VPXWhrnidc-JZaDuqnOd5X7lDndcNr7ddKMPvwYvW1PqMl_WBbguqqlB93bObnIrWj045ZKvXl9V0Fi2Wb_PpZBFtJGIXkUVJ6DNhnLAK0FivcwfO5R4tgXZqrdErKxIvKc5ipWFtbeKUBA-S1JA9HWc3VKTbJpTU_KQ1hXQ2WaRFaMoyBUBMtIx3Ym8_Hu3gvT_rpyvVHxu1YzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accurate evaluation of a distance function for optimization-based motion planning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Youngeun Lee ; Lengagne, S. ; Kheddar, A. ; Kim, Y. J.</creator><creatorcontrib>Youngeun Lee ; Lengagne, S. ; Kheddar, A. ; Kim, Y. J.</creatorcontrib><description>We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385741</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Collision avoidance ; Computer Science ; Optimization ; Planning ; Polynomials ; Robotics ; Robots ; Trajectory</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.1513-1518</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1831-1072 ; 0000-0001-9033-9742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385741$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-00778524$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Youngeun Lee</creatorcontrib><creatorcontrib>Lengagne, S.</creatorcontrib><creatorcontrib>Kheddar, A.</creatorcontrib><creatorcontrib>Kim, Y. J.</creatorcontrib><title>Accurate evaluation of a distance function for optimization-based motion planning</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.</description><subject>Benchmark testing</subject><subject>Collision avoidance</subject><subject>Computer Science</subject><subject>Optimization</subject><subject>Planning</subject><subject>Polynomials</subject><subject>Robotics</subject><subject>Robots</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtrAjEUhdMX1Fp_QOkm-zL2JpnkTpYibRUEaet-uGYyNWUeMg-h_fUVta4OnO_jLA5jDwLGQoB9nn8sP8cShBwblWiMxQUbWUxEbFAJVFpcsoEUWkWQGHPF7v4Bqusz0MktG7XtNwDsN40SdsDeJ871DXWe-x0VPXWhrnidc-JZaDuqnOd5X7lDndcNr7ddKMPvwYvW1PqMl_WBbguqqlB93bObnIrWj045ZKvXl9V0Fi2Wb_PpZBFtJGIXkUVJ6DNhnLAK0FivcwfO5R4tgXZqrdErKxIvKc5ipWFtbeKUBA-S1JA9HWc3VKTbJpTU_KQ1hXQ2WaRFaMoyBUBMtIx3Ym8_Hu3gvT_rpyvVHxu1YzQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Youngeun Lee</creator><creator>Lengagne, S.</creator><creator>Kheddar, A.</creator><creator>Kim, Y. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1831-1072</orcidid><orcidid>https://orcid.org/0000-0001-9033-9742</orcidid></search><sort><creationdate>201210</creationdate><title>Accurate evaluation of a distance function for optimization-based motion planning</title><author>Youngeun Lee ; Lengagne, S. ; Kheddar, A. ; Kim, Y. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h277t-a972a7ed16c1930769e5fc0ccfe79a05c3b57e3918e2a4d4350b998c320e02a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Collision avoidance</topic><topic>Computer Science</topic><topic>Optimization</topic><topic>Planning</topic><topic>Polynomials</topic><topic>Robotics</topic><topic>Robots</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Youngeun Lee</creatorcontrib><creatorcontrib>Lengagne, S.</creatorcontrib><creatorcontrib>Kheddar, A.</creatorcontrib><creatorcontrib>Kim, Y. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youngeun Lee</au><au>Lengagne, S.</au><au>Kheddar, A.</au><au>Kim, Y. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate evaluation of a distance function for optimization-based motion planning</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>1513</spage><epage>1518</epage><pages>1513-1518</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385741</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1831-1072</orcidid><orcidid>https://orcid.org/0000-0001-9033-9742</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.1513-1518 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6385741 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Collision avoidance Computer Science Optimization Planning Polynomials Robotics Robots Trajectory |
title | Accurate evaluation of a distance function for optimization-based motion planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20evaluation%20of%20a%20distance%20function%20for%20optimization-based%20motion%20planning&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Youngeun%20Lee&rft.date=2012-10&rft.spage=1513&rft.epage=1518&rft.pages=1513-1518&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385741&rft_dat=%3Chal_6IE%3Eoai_HAL_lirmm_00778524v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385741&rfr_iscdi=true |