Accurate evaluation of a distance function for optimization-based motion planning

We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Youngeun Lee, Lengagne, S., Kheddar, A., Kim, Y. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1518
container_issue
container_start_page 1513
container_title
container_volume
creator Youngeun Lee
Lengagne, S.
Kheddar, A.
Kim, Y. J.
description We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.
doi_str_mv 10.1109/IROS.2012.6385741
format Conference Proceeding
fullrecord <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385741</ieee_id><sourcerecordid>oai_HAL_lirmm_00778524v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h277t-a972a7ed16c1930769e5fc0ccfe79a05c3b57e3918e2a4d4350b998c320e02a3</originalsourceid><addsrcrecordid>eNo9kEtrAjEUhdMX1Fp_QOkm-zL2JpnkTpYibRUEaet-uGYyNWUeMg-h_fUVta4OnO_jLA5jDwLGQoB9nn8sP8cShBwblWiMxQUbWUxEbFAJVFpcsoEUWkWQGHPF7v4Bqusz0MktG7XtNwDsN40SdsDeJ871DXWe-x0VPXWhrnidc-JZaDuqnOd5X7lDndcNr7ddKMPvwYvW1PqMl_WBbguqqlB93bObnIrWj045ZKvXl9V0Fi2Wb_PpZBFtJGIXkUVJ6DNhnLAK0FivcwfO5R4tgXZqrdErKxIvKc5ipWFtbeKUBA-S1JA9HWc3VKTbJpTU_KQ1hXQ2WaRFaMoyBUBMtIx3Ym8_Hu3gvT_rpyvVHxu1YzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Accurate evaluation of a distance function for optimization-based motion planning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Youngeun Lee ; Lengagne, S. ; Kheddar, A. ; Kim, Y. J.</creator><creatorcontrib>Youngeun Lee ; Lengagne, S. ; Kheddar, A. ; Kim, Y. J.</creatorcontrib><description>We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385741</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Collision avoidance ; Computer Science ; Optimization ; Planning ; Polynomials ; Robotics ; Robots ; Trajectory</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.1513-1518</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1831-1072 ; 0000-0001-9033-9742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385741$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-00778524$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Youngeun Lee</creatorcontrib><creatorcontrib>Lengagne, S.</creatorcontrib><creatorcontrib>Kheddar, A.</creatorcontrib><creatorcontrib>Kim, Y. J.</creatorcontrib><title>Accurate evaluation of a distance function for optimization-based motion planning</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.</description><subject>Benchmark testing</subject><subject>Collision avoidance</subject><subject>Computer Science</subject><subject>Optimization</subject><subject>Planning</subject><subject>Polynomials</subject><subject>Robotics</subject><subject>Robots</subject><subject>Trajectory</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtrAjEUhdMX1Fp_QOkm-zL2JpnkTpYibRUEaet-uGYyNWUeMg-h_fUVta4OnO_jLA5jDwLGQoB9nn8sP8cShBwblWiMxQUbWUxEbFAJVFpcsoEUWkWQGHPF7v4Bqusz0MktG7XtNwDsN40SdsDeJ871DXWe-x0VPXWhrnidc-JZaDuqnOd5X7lDndcNr7ddKMPvwYvW1PqMl_WBbguqqlB93bObnIrWj045ZKvXl9V0Fi2Wb_PpZBFtJGIXkUVJ6DNhnLAK0FivcwfO5R4tgXZqrdErKxIvKc5ipWFtbeKUBA-S1JA9HWc3VKTbJpTU_KQ1hXQ2WaRFaMoyBUBMtIx3Ym8_Hu3gvT_rpyvVHxu1YzQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Youngeun Lee</creator><creator>Lengagne, S.</creator><creator>Kheddar, A.</creator><creator>Kim, Y. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1831-1072</orcidid><orcidid>https://orcid.org/0000-0001-9033-9742</orcidid></search><sort><creationdate>201210</creationdate><title>Accurate evaluation of a distance function for optimization-based motion planning</title><author>Youngeun Lee ; Lengagne, S. ; Kheddar, A. ; Kim, Y. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h277t-a972a7ed16c1930769e5fc0ccfe79a05c3b57e3918e2a4d4350b998c320e02a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Collision avoidance</topic><topic>Computer Science</topic><topic>Optimization</topic><topic>Planning</topic><topic>Polynomials</topic><topic>Robotics</topic><topic>Robots</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Youngeun Lee</creatorcontrib><creatorcontrib>Lengagne, S.</creatorcontrib><creatorcontrib>Kheddar, A.</creatorcontrib><creatorcontrib>Kim, Y. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Youngeun Lee</au><au>Lengagne, S.</au><au>Kheddar, A.</au><au>Kim, Y. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Accurate evaluation of a distance function for optimization-based motion planning</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>1513</spage><epage>1518</epage><pages>1513-1518</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>We propose three novel methods to evaluate a distance function for robotic motion planning based on semiinfinite programming (SIP) framework; these methods include golden section search (GSS), conservative advancement (CA) and a hybrid of GSS and CA. The distance function can have a positive and a negative value, each of which corresponds to the Euclidean distance and penetration depth, respectively. In our approach, each robot's link is approximated and bounded by a capsule shape, and the distance between some selected link pairs is continuously evaluated along the joint's trajectory, provided by the SIP solver, and the global minimum distance is found. This distance is fed into the SIP solver, which subsequently suggests a new trajectory. This process is iterated until no negative distance is found anywhere in the links of the robot.We have implemented the three distance evaluation methods, and experimentally validated that the proposed methods effectively and accurately find the global minimum distances to generate a self-collision-free motion for the HRP-2 humanoid robot. Moreover, we demonstrate that the hybrid method outperforms other two methods in terms of computational speed and reliability.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385741</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1831-1072</orcidid><orcidid>https://orcid.org/0000-0001-9033-9742</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.1513-1518
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6385741
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Collision avoidance
Computer Science
Optimization
Planning
Polynomials
Robotics
Robots
Trajectory
title Accurate evaluation of a distance function for optimization-based motion planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Accurate%20evaluation%20of%20a%20distance%20function%20for%20optimization-based%20motion%20planning&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Youngeun%20Lee&rft.date=2012-10&rft.spage=1513&rft.epage=1518&rft.pages=1513-1518&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385741&rft_dat=%3Chal_6IE%3Eoai_HAL_lirmm_00778524v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385741&rfr_iscdi=true