Mobile robot monocular vision navigation based on road region and boundary estimation
We present a monocular vision-based navigation system that incorporates two contrasting approaches: region segmentation that computes the road appearance, and road boundary detection that estimates the road shape. The former approach segments the image into multiple regions, then selects and tracks...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | |
container_start_page | 1043 |
container_title | |
container_volume | |
creator | Chin-Kai Chang Siagian, C. Itti, L. |
description | We present a monocular vision-based navigation system that incorporates two contrasting approaches: region segmentation that computes the road appearance, and road boundary detection that estimates the road shape. The former approach segments the image into multiple regions, then selects and tracks the most likely road appearance. On the other hand, the latter detects the vanishing point and road boundaries to estimate the shape of the road. Our algorithm operates in urban road settings and requires no training or camera calibration to maximize its adaptability to many environments. We tested our system in 1 indoor and 3 outdoor urban environments using our ground-based robot, Beobot 2.0, for real-time autonomous visual navigation. In 20 trial runs the robot was able to travel autonomously for 98.19% of the total route length of 316.60m. |
doi_str_mv | 10.1109/IROS.2012.6385703 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385703</ieee_id><sourcerecordid>6385703</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1644f030716fffd8d687cb66ef6a08a6131ce1c1f6a3c1bbd7e6e6f9a1f563403</originalsourceid><addsrcrecordid>eNo9kN1KAzEQheMfWGsfQLzJC2zN7OxOspdSrBYqBbXXJdkkJdJuJLst9O3davVqzpxvOAOHsTsQYwBRPczeFu_jXEA-JlSlFHjGRpVUUJBEkFjCORvkUGImFNEFu_kDEi__Qamu2ahtP4UQfSYhVAO2fI0mbBxP0cSOb2MT691GJ74PbYgNb_Q-rHV3lEa3zvJepKgtT259NHVjuYm7xup04K7twvbn-JZdeb1p3eg0h2w5ffqYvGTzxfNs8jjPAsiyy4CKwgsUEsh7b5UlJWtD5DxpoTQBQu2ghn7FGoyx0pEjX2nwJWEhcMjuf3ODc271lfr36bA6NYTfUR1WzA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mobile robot monocular vision navigation based on road region and boundary estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chin-Kai Chang ; Siagian, C. ; Itti, L.</creator><creatorcontrib>Chin-Kai Chang ; Siagian, C. ; Itti, L.</creatorcontrib><description>We present a monocular vision-based navigation system that incorporates two contrasting approaches: region segmentation that computes the road appearance, and road boundary detection that estimates the road shape. The former approach segments the image into multiple regions, then selects and tracks the most likely road appearance. On the other hand, the latter detects the vanishing point and road boundaries to estimate the shape of the road. Our algorithm operates in urban road settings and requires no training or camera calibration to maximize its adaptability to many environments. We tested our system in 1 indoor and 3 outdoor urban environments using our ground-based robot, Beobot 2.0, for real-time autonomous visual navigation. In 20 trial runs the robot was able to travel autonomously for 98.19% of the total route length of 316.60m.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385703</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; Image color analysis ; Image segmentation ; Navigation ; Roads ; Robots ; Robustness</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.1043-1050</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin-Kai Chang</creatorcontrib><creatorcontrib>Siagian, C.</creatorcontrib><creatorcontrib>Itti, L.</creatorcontrib><title>Mobile robot monocular vision navigation based on road region and boundary estimation</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a monocular vision-based navigation system that incorporates two contrasting approaches: region segmentation that computes the road appearance, and road boundary detection that estimates the road shape. The former approach segments the image into multiple regions, then selects and tracks the most likely road appearance. On the other hand, the latter detects the vanishing point and road boundaries to estimate the shape of the road. Our algorithm operates in urban road settings and requires no training or camera calibration to maximize its adaptability to many environments. We tested our system in 1 indoor and 3 outdoor urban environments using our ground-based robot, Beobot 2.0, for real-time autonomous visual navigation. In 20 trial runs the robot was able to travel autonomously for 98.19% of the total route length of 316.60m.</description><subject>Estimation</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Navigation</subject><subject>Roads</subject><subject>Robots</subject><subject>Robustness</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1KAzEQheMfWGsfQLzJC2zN7OxOspdSrBYqBbXXJdkkJdJuJLst9O3davVqzpxvOAOHsTsQYwBRPczeFu_jXEA-JlSlFHjGRpVUUJBEkFjCORvkUGImFNEFu_kDEi__Qamu2ahtP4UQfSYhVAO2fI0mbBxP0cSOb2MT691GJ74PbYgNb_Q-rHV3lEa3zvJepKgtT259NHVjuYm7xup04K7twvbn-JZdeb1p3eg0h2w5ffqYvGTzxfNs8jjPAsiyy4CKwgsUEsh7b5UlJWtD5DxpoTQBQu2ghn7FGoyx0pEjX2nwJWEhcMjuf3ODc271lfr36bA6NYTfUR1WzA</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Chin-Kai Chang</creator><creator>Siagian, C.</creator><creator>Itti, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Mobile robot monocular vision navigation based on road region and boundary estimation</title><author>Chin-Kai Chang ; Siagian, C. ; Itti, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1644f030716fffd8d687cb66ef6a08a6131ce1c1f6a3c1bbd7e6e6f9a1f563403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Estimation</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Navigation</topic><topic>Roads</topic><topic>Robots</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin-Kai Chang</creatorcontrib><creatorcontrib>Siagian, C.</creatorcontrib><creatorcontrib>Itti, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin-Kai Chang</au><au>Siagian, C.</au><au>Itti, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mobile robot monocular vision navigation based on road region and boundary estimation</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>1043</spage><epage>1050</epage><pages>1043-1050</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>We present a monocular vision-based navigation system that incorporates two contrasting approaches: region segmentation that computes the road appearance, and road boundary detection that estimates the road shape. The former approach segments the image into multiple regions, then selects and tracks the most likely road appearance. On the other hand, the latter detects the vanishing point and road boundaries to estimate the shape of the road. Our algorithm operates in urban road settings and requires no training or camera calibration to maximize its adaptability to many environments. We tested our system in 1 indoor and 3 outdoor urban environments using our ground-based robot, Beobot 2.0, for real-time autonomous visual navigation. In 20 trial runs the robot was able to travel autonomously for 98.19% of the total route length of 316.60m.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385703</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.1043-1050 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6385703 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Estimation Image color analysis Image segmentation Navigation Roads Robots Robustness |
title | Mobile robot monocular vision navigation based on road region and boundary estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mobile%20robot%20monocular%20vision%20navigation%20based%20on%20road%20region%20and%20boundary%20estimation&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Chin-Kai%20Chang&rft.date=2012-10&rft.spage=1043&rft.epage=1050&rft.pages=1043-1050&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385703&rft_dat=%3Cieee_6IE%3E6385703%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385703&rfr_iscdi=true |