Segmentation of unknown objects in indoor environments

We present a framework for segmenting unknown objects in RGB-D images suitable for robotics tasks such as object search, grasping and manipulation. While handling single objects on a table is solved, handling complex scenes poses considerable problems due to clutter and occlusion. After pre-segmenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., Vincze, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4796
container_issue
container_start_page 4791
container_title
container_volume
creator Richtsfeld, A.
Morwald, T.
Prankl, J.
Zillich, M.
Vincze, M.
description We present a framework for segmenting unknown objects in RGB-D images suitable for robotics tasks such as object search, grasping and manipulation. While handling single objects on a table is solved, handling complex scenes poses considerable problems due to clutter and occlusion. After pre-segmentation of the input image based on surface normals, surface patches are estimated using a mixture of planes and NURBS (non-uniform rational B-splines) and model selection is employed to find the best representation for the given data. We then construct a graph from surface patches and relations between pairs of patches and perform graph cut to arrive at object hypotheses segmented from the scene. The energy terms for patch relations are learned from user annotated training data, where support vector machines (SVM) are trained to classify a relation as being indicative of two patches belonging to the same object. We show evaluation of the relations and results on a database of different test sets, demonstrating that the approach can segment objects of various shapes in cluttered table top scenes.
doi_str_mv 10.1109/IROS.2012.6385661
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385661</ieee_id><sourcerecordid>6385661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-c788509997c875f418e3d18f70f5050f59b19c112f825415a01c273567ff3503</originalsourceid><addsrcrecordid>eNo9kN1KAzEQheMfWOs-gHizL7DbmWQnmVxK8adQKLS9L9s0ka02kd1V8e1dsQqHmQPfcGCOEDcIJSLYyWy5WJUSUJZaMWmNJyKzhrHSRqFRhKdiJJFUAaz1mbj6A0ad_wPiS5F13R4Ahkyt0I6EXvnng4993Tcp5ink7_Elps_Bbvfe9V3exEG7lNrcx4-mTfHnursWF6F-7Xx23GOxfrhfT5-K-eJxNr2bF06y7QtnmAmstcaxoVAhe7VDDgYCAQ3DbtE6RBlYUoVUAzo5fKNNCIpAjcXtb2zjvd-8tc2hbr82xwbUN0y5SUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Segmentation of unknown objects in indoor environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Richtsfeld, A. ; Morwald, T. ; Prankl, J. ; Zillich, M. ; Vincze, M.</creator><creatorcontrib>Richtsfeld, A. ; Morwald, T. ; Prankl, J. ; Zillich, M. ; Vincze, M.</creatorcontrib><description>We present a framework for segmenting unknown objects in RGB-D images suitable for robotics tasks such as object search, grasping and manipulation. While handling single objects on a table is solved, handling complex scenes poses considerable problems due to clutter and occlusion. After pre-segmentation of the input image based on surface normals, surface patches are estimated using a mixture of planes and NURBS (non-uniform rational B-splines) and model selection is employed to find the best representation for the given data. We then construct a graph from surface patches and relations between pairs of patches and perform graph cut to arrive at object hypotheses segmented from the scene. The energy terms for patch relations are learned from user annotated training data, where support vector machines (SVM) are trained to classify a relation as being indicative of two patches belonging to the same object. We show evaluation of the relations and results on a database of different test sets, demonstrating that the approach can segment objects of various shapes in cluttered table top scenes.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385661</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Image segmentation ; Splines (mathematics) ; Support vector machines ; Surface reconstruction ; Surface topography ; Vectors</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.4791-4796</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-c788509997c875f418e3d18f70f5050f59b19c112f825415a01c273567ff3503</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385661$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Richtsfeld, A.</creatorcontrib><creatorcontrib>Morwald, T.</creatorcontrib><creatorcontrib>Prankl, J.</creatorcontrib><creatorcontrib>Zillich, M.</creatorcontrib><creatorcontrib>Vincze, M.</creatorcontrib><title>Segmentation of unknown objects in indoor environments</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a framework for segmenting unknown objects in RGB-D images suitable for robotics tasks such as object search, grasping and manipulation. While handling single objects on a table is solved, handling complex scenes poses considerable problems due to clutter and occlusion. After pre-segmentation of the input image based on surface normals, surface patches are estimated using a mixture of planes and NURBS (non-uniform rational B-splines) and model selection is employed to find the best representation for the given data. We then construct a graph from surface patches and relations between pairs of patches and perform graph cut to arrive at object hypotheses segmented from the scene. The energy terms for patch relations are learned from user annotated training data, where support vector machines (SVM) are trained to classify a relation as being indicative of two patches belonging to the same object. We show evaluation of the relations and results on a database of different test sets, demonstrating that the approach can segment objects of various shapes in cluttered table top scenes.</description><subject>Computational modeling</subject><subject>Image segmentation</subject><subject>Splines (mathematics)</subject><subject>Support vector machines</subject><subject>Surface reconstruction</subject><subject>Surface topography</subject><subject>Vectors</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kN1KAzEQheMfWOs-gHizL7DbmWQnmVxK8adQKLS9L9s0ka02kd1V8e1dsQqHmQPfcGCOEDcIJSLYyWy5WJUSUJZaMWmNJyKzhrHSRqFRhKdiJJFUAaz1mbj6A0ad_wPiS5F13R4Ahkyt0I6EXvnng4993Tcp5ink7_Elps_Bbvfe9V3exEG7lNrcx4-mTfHnursWF6F-7Xx23GOxfrhfT5-K-eJxNr2bF06y7QtnmAmstcaxoVAhe7VDDgYCAQ3DbtE6RBlYUoVUAzo5fKNNCIpAjcXtb2zjvd-8tc2hbr82xwbUN0y5SUA</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Richtsfeld, A.</creator><creator>Morwald, T.</creator><creator>Prankl, J.</creator><creator>Zillich, M.</creator><creator>Vincze, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Segmentation of unknown objects in indoor environments</title><author>Richtsfeld, A. ; Morwald, T. ; Prankl, J. ; Zillich, M. ; Vincze, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-c788509997c875f418e3d18f70f5050f59b19c112f825415a01c273567ff3503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Image segmentation</topic><topic>Splines (mathematics)</topic><topic>Support vector machines</topic><topic>Surface reconstruction</topic><topic>Surface topography</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Richtsfeld, A.</creatorcontrib><creatorcontrib>Morwald, T.</creatorcontrib><creatorcontrib>Prankl, J.</creatorcontrib><creatorcontrib>Zillich, M.</creatorcontrib><creatorcontrib>Vincze, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richtsfeld, A.</au><au>Morwald, T.</au><au>Prankl, J.</au><au>Zillich, M.</au><au>Vincze, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Segmentation of unknown objects in indoor environments</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-10</date><risdate>2012</risdate><spage>4791</spage><epage>4796</epage><pages>4791-4796</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>We present a framework for segmenting unknown objects in RGB-D images suitable for robotics tasks such as object search, grasping and manipulation. While handling single objects on a table is solved, handling complex scenes poses considerable problems due to clutter and occlusion. After pre-segmentation of the input image based on surface normals, surface patches are estimated using a mixture of planes and NURBS (non-uniform rational B-splines) and model selection is employed to find the best representation for the given data. We then construct a graph from surface patches and relations between pairs of patches and perform graph cut to arrive at object hypotheses segmented from the scene. The energy terms for patch relations are learned from user annotated training data, where support vector machines (SVM) are trained to classify a relation as being indicative of two patches belonging to the same object. We show evaluation of the relations and results on a database of different test sets, demonstrating that the approach can segment objects of various shapes in cluttered table top scenes.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385661</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.4791-4796
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6385661
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Image segmentation
Splines (mathematics)
Support vector machines
Surface reconstruction
Surface topography
Vectors
title Segmentation of unknown objects in indoor environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Segmentation%20of%20unknown%20objects%20in%20indoor%20environments&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Richtsfeld,%20A.&rft.date=2012-10&rft.spage=4791&rft.epage=4796&rft.pages=4791-4796&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385661&rft_dat=%3Cieee_6IE%3E6385661%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385661&rfr_iscdi=true