Next-best-scan planning for autonomous 3D modeling

We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kriegel, S., Rink, C., Bodenmuller, T., Narr, A., Suppa, M., Hirzinger, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2856
container_issue
container_start_page 2850
container_title
container_volume
creator Kriegel, S.
Rink, C.
Bodenmuller, T.
Narr, A.
Suppa, M.
Hirzinger, G.
description We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.
doi_str_mv 10.1109/IROS.2012.6385624
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385624</ieee_id><sourcerecordid>6385624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-c336b298fc8b22481d5bd0684b5a14f34a245b7395dc0658872cba4a147384283</originalsourceid><addsrcrecordid>eNo9z8tKw0AUxvHxBtaaBxA3eYGJM-fM5WQp9VYoFrysy8xkIpEmKZkU9O0NWF19ix_84WPsSopCSlHeLF_WrwUICYVB0gbUEctKS1IZi9KilsdsBlIjF2TMCbv4A4un_6DpnGUpfQohpqZBWc4YPMevkfuYRp6C6_Ld1nVd033kdT_kbj_2Xd_2-5TjXd72VdxOdMnOardNMTvsnL0_3L8tnvhq_bhc3K54AGNGHhCNh5LqQB5Akay0r4Qh5bWTqkblQGlvsdRVEEYTWQjeqckskgLCObv-7TYxxs1uaFo3fG8O9_EH295Hsw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Next-best-scan planning for autonomous 3D modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kriegel, S. ; Rink, C. ; Bodenmuller, T. ; Narr, A. ; Suppa, M. ; Hirzinger, G.</creator><creatorcontrib>Kriegel, S. ; Rink, C. ; Bodenmuller, T. ; Narr, A. ; Suppa, M. ; Hirzinger, G.</creatorcontrib><description>We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385624</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collision avoidance ; NIST ; Planning ; Robot sensing systems ; Solid modeling ; Three dimensional displays</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2850-2856</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-c336b298fc8b22481d5bd0684b5a14f34a245b7395dc0658872cba4a147384283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kriegel, S.</creatorcontrib><creatorcontrib>Rink, C.</creatorcontrib><creatorcontrib>Bodenmuller, T.</creatorcontrib><creatorcontrib>Narr, A.</creatorcontrib><creatorcontrib>Suppa, M.</creatorcontrib><creatorcontrib>Hirzinger, G.</creatorcontrib><title>Next-best-scan planning for autonomous 3D modeling</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.</description><subject>Collision avoidance</subject><subject>NIST</subject><subject>Planning</subject><subject>Robot sensing systems</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9z8tKw0AUxvHxBtaaBxA3eYGJM-fM5WQp9VYoFrysy8xkIpEmKZkU9O0NWF19ix_84WPsSopCSlHeLF_WrwUICYVB0gbUEctKS1IZi9KilsdsBlIjF2TMCbv4A4un_6DpnGUpfQohpqZBWc4YPMevkfuYRp6C6_Ld1nVd033kdT_kbj_2Xd_2-5TjXd72VdxOdMnOardNMTvsnL0_3L8tnvhq_bhc3K54AGNGHhCNh5LqQB5Akay0r4Qh5bWTqkblQGlvsdRVEEYTWQjeqckskgLCObv-7TYxxs1uaFo3fG8O9_EH295Hsw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Kriegel, S.</creator><creator>Rink, C.</creator><creator>Bodenmuller, T.</creator><creator>Narr, A.</creator><creator>Suppa, M.</creator><creator>Hirzinger, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Next-best-scan planning for autonomous 3D modeling</title><author>Kriegel, S. ; Rink, C. ; Bodenmuller, T. ; Narr, A. ; Suppa, M. ; Hirzinger, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-c336b298fc8b22481d5bd0684b5a14f34a245b7395dc0658872cba4a147384283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Collision avoidance</topic><topic>NIST</topic><topic>Planning</topic><topic>Robot sensing systems</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Kriegel, S.</creatorcontrib><creatorcontrib>Rink, C.</creatorcontrib><creatorcontrib>Bodenmuller, T.</creatorcontrib><creatorcontrib>Narr, A.</creatorcontrib><creatorcontrib>Suppa, M.</creatorcontrib><creatorcontrib>Hirzinger, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kriegel, S.</au><au>Rink, C.</au><au>Bodenmuller, T.</au><au>Narr, A.</au><au>Suppa, M.</au><au>Hirzinger, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Next-best-scan planning for autonomous 3D modeling</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2850</spage><epage>2856</epage><pages>2850-2856</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385624</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2850-2856
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6385624
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Collision avoidance
NIST
Planning
Robot sensing systems
Solid modeling
Three dimensional displays
title Next-best-scan planning for autonomous 3D modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Next-best-scan%20planning%20for%20autonomous%203D%20modeling&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Kriegel,%20S.&rft.date=2012-01-01&rft.spage=2850&rft.epage=2856&rft.pages=2850-2856&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385624&rft_dat=%3Cieee_6IE%3E6385624%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385624&rfr_iscdi=true