Next-best-scan planning for autonomous 3D modeling
We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (st...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2856 |
---|---|
container_issue | |
container_start_page | 2850 |
container_title | |
container_volume | |
creator | Kriegel, S. Rink, C. Bodenmuller, T. Narr, A. Suppa, M. Hirzinger, G. |
description | We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time. |
doi_str_mv | 10.1109/IROS.2012.6385624 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6385624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6385624</ieee_id><sourcerecordid>6385624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-c336b298fc8b22481d5bd0684b5a14f34a245b7395dc0658872cba4a147384283</originalsourceid><addsrcrecordid>eNo9z8tKw0AUxvHxBtaaBxA3eYGJM-fM5WQp9VYoFrysy8xkIpEmKZkU9O0NWF19ix_84WPsSopCSlHeLF_WrwUICYVB0gbUEctKS1IZi9KilsdsBlIjF2TMCbv4A4un_6DpnGUpfQohpqZBWc4YPMevkfuYRp6C6_Ld1nVd033kdT_kbj_2Xd_2-5TjXd72VdxOdMnOardNMTvsnL0_3L8tnvhq_bhc3K54AGNGHhCNh5LqQB5Akay0r4Qh5bWTqkblQGlvsdRVEEYTWQjeqckskgLCObv-7TYxxs1uaFo3fG8O9_EH295Hsw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Next-best-scan planning for autonomous 3D modeling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kriegel, S. ; Rink, C. ; Bodenmuller, T. ; Narr, A. ; Suppa, M. ; Hirzinger, G.</creator><creatorcontrib>Kriegel, S. ; Rink, C. ; Bodenmuller, T. ; Narr, A. ; Suppa, M. ; Hirzinger, G.</creatorcontrib><description>We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1467317373</identifier><identifier>ISBN: 9781467317375</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781467317351</identifier><identifier>EISBN: 1467317365</identifier><identifier>EISBN: 9781467317368</identifier><identifier>EISBN: 1467317357</identifier><identifier>DOI: 10.1109/IROS.2012.6385624</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collision avoidance ; NIST ; Planning ; Robot sensing systems ; Solid modeling ; Three dimensional displays</subject><ispartof>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2850-2856</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-c336b298fc8b22481d5bd0684b5a14f34a245b7395dc0658872cba4a147384283</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6385624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6385624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kriegel, S.</creatorcontrib><creatorcontrib>Rink, C.</creatorcontrib><creatorcontrib>Bodenmuller, T.</creatorcontrib><creatorcontrib>Narr, A.</creatorcontrib><creatorcontrib>Suppa, M.</creatorcontrib><creatorcontrib>Hirzinger, G.</creatorcontrib><title>Next-best-scan planning for autonomous 3D modeling</title><title>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.</description><subject>Collision avoidance</subject><subject>NIST</subject><subject>Planning</subject><subject>Robot sensing systems</subject><subject>Solid modeling</subject><subject>Three dimensional displays</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467317373</isbn><isbn>9781467317375</isbn><isbn>9781467317351</isbn><isbn>1467317365</isbn><isbn>9781467317368</isbn><isbn>1467317357</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9z8tKw0AUxvHxBtaaBxA3eYGJM-fM5WQp9VYoFrysy8xkIpEmKZkU9O0NWF19ix_84WPsSopCSlHeLF_WrwUICYVB0gbUEctKS1IZi9KilsdsBlIjF2TMCbv4A4un_6DpnGUpfQohpqZBWc4YPMevkfuYRp6C6_Ld1nVd033kdT_kbj_2Xd_2-5TjXd72VdxOdMnOardNMTvsnL0_3L8tnvhq_bhc3K54AGNGHhCNh5LqQB5Akay0r4Qh5bWTqkblQGlvsdRVEEYTWQjeqckskgLCObv-7TYxxs1uaFo3fG8O9_EH295Hsw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Kriegel, S.</creator><creator>Rink, C.</creator><creator>Bodenmuller, T.</creator><creator>Narr, A.</creator><creator>Suppa, M.</creator><creator>Hirzinger, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Next-best-scan planning for autonomous 3D modeling</title><author>Kriegel, S. ; Rink, C. ; Bodenmuller, T. ; Narr, A. ; Suppa, M. ; Hirzinger, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-c336b298fc8b22481d5bd0684b5a14f34a245b7395dc0658872cba4a147384283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Collision avoidance</topic><topic>NIST</topic><topic>Planning</topic><topic>Robot sensing systems</topic><topic>Solid modeling</topic><topic>Three dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Kriegel, S.</creatorcontrib><creatorcontrib>Rink, C.</creatorcontrib><creatorcontrib>Bodenmuller, T.</creatorcontrib><creatorcontrib>Narr, A.</creatorcontrib><creatorcontrib>Suppa, M.</creatorcontrib><creatorcontrib>Hirzinger, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kriegel, S.</au><au>Rink, C.</au><au>Bodenmuller, T.</au><au>Narr, A.</au><au>Suppa, M.</au><au>Hirzinger, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Next-best-scan planning for autonomous 3D modeling</atitle><btitle>2012 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>2850</spage><epage>2856</epage><pages>2850-2856</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1467317373</isbn><isbn>9781467317375</isbn><eisbn>9781467317351</eisbn><eisbn>1467317365</eisbn><eisbn>9781467317368</eisbn><eisbn>1467317357</eisbn><abstract>We present a next-best-scan (NBS) planning approach for autonomous 3D modeling. The system successively completes a 3D model from complex shaped objects by iteratively selecting a NBS based on previously acquired data. For this purpose, new range data is accumulated in-the-loop into a 3D surface (streaming reconstruction) and new continuous scan paths along the estimated surface trend are generated. Further, the space around the object is explored using a probabilistic exploration approach that considers sensor uncertainty. This allows for collision free path planning in order to completely scan unknown objects. For each scan path, the expected information gain is determined and the best path is selected as NBS. The presented NBS approach is tested with a laser striper system, attached to an industrial robot. The results are compared to state-of-the-art next-best-view methods. Our results show promising performance with respect to completeness, quality and scan time.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2012.6385624</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, p.2850-2856 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6385624 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Collision avoidance NIST Planning Robot sensing systems Solid modeling Three dimensional displays |
title | Next-best-scan planning for autonomous 3D modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Next-best-scan%20planning%20for%20autonomous%203D%20modeling&rft.btitle=2012%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Kriegel,%20S.&rft.date=2012-01-01&rft.spage=2850&rft.epage=2856&rft.pages=2850-2856&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1467317373&rft.isbn_list=9781467317375&rft_id=info:doi/10.1109/IROS.2012.6385624&rft_dat=%3Cieee_6IE%3E6385624%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467317351&rft.eisbn_list=1467317365&rft.eisbn_list=9781467317368&rft.eisbn_list=1467317357&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6385624&rfr_iscdi=true |