A new embedded e-nose system to identify smell of smoke

This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sadeghifard, S., Esmaeilani, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 257
container_issue
container_start_page 253
container_title
container_volume
creator Sadeghifard, S.
Esmaeilani, L.
description This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.
doi_str_mv 10.1109/SYSoSE.2012.6384178
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6384178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6384178</ieee_id><sourcerecordid>6384178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d992e9006bee669dae9cf3440a8815141daf9d6e1bf51dd5663c5aa2464816793</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUekoLZ5gm7mBRLnzv9dllK1UHCRblyVSecORPMjnYDk7S1Yz-Z8Z_PBYWwNogIQ-Fx_1GO9q6QAWVnlNTh_x55AW6ckOuXvWYHO_2-tHliR86e4xkujvHlkbsMH-uHUNxQjRU7lMGbiec4T9XwaeRtpmNo089xT1_ExXWH8ohVbpNBlKm69ZMeX3XH7Vh7eX_fbzaFsUUxlRJSEQtiGyFqMgfCclNYieA8GNMSQMFqCJhmI0VirziYEqa32YB2qJVv_aVsiOn1f2j5c5tPtqvoF-ktG_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new embedded e-nose system to identify smell of smoke</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sadeghifard, S. ; Esmaeilani, L.</creator><creatorcontrib>Sadeghifard, S. ; Esmaeilani, L.</creatorcontrib><description>This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.</description><identifier>ISBN: 9781467329743</identifier><identifier>ISBN: 1467329746</identifier><identifier>EISBN: 1467329738</identifier><identifier>EISBN: 9781467329736</identifier><identifier>EISBN: 9781467329750</identifier><identifier>EISBN: 1467329754</identifier><identifier>DOI: 10.1109/SYSoSE.2012.6384178</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Character recognition ; Electronic nose ; Fire detection ; Fires ; Gas sensor ; Heating ; Humidity measurement ; Materials ; Microcontrollers ; Neural network</subject><ispartof>2012 7th International Conference on System of Systems Engineering (SoSE), 2012, p.253-257</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6384178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6384178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadeghifard, S.</creatorcontrib><creatorcontrib>Esmaeilani, L.</creatorcontrib><title>A new embedded e-nose system to identify smell of smoke</title><title>2012 7th International Conference on System of Systems Engineering (SoSE)</title><addtitle>SYSoSE</addtitle><description>This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.</description><subject>Arrays</subject><subject>Character recognition</subject><subject>Electronic nose</subject><subject>Fire detection</subject><subject>Fires</subject><subject>Gas sensor</subject><subject>Heating</subject><subject>Humidity measurement</subject><subject>Materials</subject><subject>Microcontrollers</subject><subject>Neural network</subject><isbn>9781467329743</isbn><isbn>1467329746</isbn><isbn>1467329738</isbn><isbn>9781467329736</isbn><isbn>9781467329750</isbn><isbn>1467329754</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhUekoLZ5gm7mBRLnzv9dllK1UHCRblyVSecORPMjnYDk7S1Yz-Z8Z_PBYWwNogIQ-Fx_1GO9q6QAWVnlNTh_x55AW6ckOuXvWYHO_2-tHliR86e4xkujvHlkbsMH-uHUNxQjRU7lMGbiec4T9XwaeRtpmNo089xT1_ExXWH8ohVbpNBlKm69ZMeX3XH7Vh7eX_fbzaFsUUxlRJSEQtiGyFqMgfCclNYieA8GNMSQMFqCJhmI0VirziYEqa32YB2qJVv_aVsiOn1f2j5c5tPtqvoF-ktG_Q</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Sadeghifard, S.</creator><creator>Esmaeilani, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>A new embedded e-nose system to identify smell of smoke</title><author>Sadeghifard, S. ; Esmaeilani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d992e9006bee669dae9cf3440a8815141daf9d6e1bf51dd5663c5aa2464816793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Character recognition</topic><topic>Electronic nose</topic><topic>Fire detection</topic><topic>Fires</topic><topic>Gas sensor</topic><topic>Heating</topic><topic>Humidity measurement</topic><topic>Materials</topic><topic>Microcontrollers</topic><topic>Neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Sadeghifard, S.</creatorcontrib><creatorcontrib>Esmaeilani, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadeghifard, S.</au><au>Esmaeilani, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new embedded e-nose system to identify smell of smoke</atitle><btitle>2012 7th International Conference on System of Systems Engineering (SoSE)</btitle><stitle>SYSoSE</stitle><date>2012-07</date><risdate>2012</risdate><spage>253</spage><epage>257</epage><pages>253-257</pages><isbn>9781467329743</isbn><isbn>1467329746</isbn><eisbn>1467329738</eisbn><eisbn>9781467329736</eisbn><eisbn>9781467329750</eisbn><eisbn>1467329754</eisbn><abstract>This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.</abstract><pub>IEEE</pub><doi>10.1109/SYSoSE.2012.6384178</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467329743
ispartof 2012 7th International Conference on System of Systems Engineering (SoSE), 2012, p.253-257
issn
language eng
recordid cdi_ieee_primary_6384178
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Character recognition
Electronic nose
Fire detection
Fires
Gas sensor
Heating
Humidity measurement
Materials
Microcontrollers
Neural network
title A new embedded e-nose system to identify smell of smoke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20embedded%20e-nose%20system%20to%20identify%20smell%20of%20smoke&rft.btitle=2012%207th%20International%20Conference%20on%20System%20of%20Systems%20Engineering%20(SoSE)&rft.au=Sadeghifard,%20S.&rft.date=2012-07&rft.spage=253&rft.epage=257&rft.pages=253-257&rft.isbn=9781467329743&rft.isbn_list=1467329746&rft_id=info:doi/10.1109/SYSoSE.2012.6384178&rft_dat=%3Cieee_6IE%3E6384178%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467329738&rft.eisbn_list=9781467329736&rft.eisbn_list=9781467329750&rft.eisbn_list=1467329754&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6384178&rfr_iscdi=true