A new embedded e-nose system to identify smell of smoke
This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | |
container_start_page | 253 |
container_title | |
container_volume | |
creator | Sadeghifard, S. Esmaeilani, L. |
description | This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification. |
doi_str_mv | 10.1109/SYSoSE.2012.6384178 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6384178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6384178</ieee_id><sourcerecordid>6384178</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d992e9006bee669dae9cf3440a8815141daf9d6e1bf51dd5663c5aa2464816793</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUekoLZ5gm7mBRLnzv9dllK1UHCRblyVSecORPMjnYDk7S1Yz-Z8Z_PBYWwNogIQ-Fx_1GO9q6QAWVnlNTh_x55AW6ckOuXvWYHO_2-tHliR86e4xkujvHlkbsMH-uHUNxQjRU7lMGbiec4T9XwaeRtpmNo089xT1_ExXWH8ohVbpNBlKm69ZMeX3XH7Vh7eX_fbzaFsUUxlRJSEQtiGyFqMgfCclNYieA8GNMSQMFqCJhmI0VirziYEqa32YB2qJVv_aVsiOn1f2j5c5tPtqvoF-ktG_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new embedded e-nose system to identify smell of smoke</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sadeghifard, S. ; Esmaeilani, L.</creator><creatorcontrib>Sadeghifard, S. ; Esmaeilani, L.</creatorcontrib><description>This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.</description><identifier>ISBN: 9781467329743</identifier><identifier>ISBN: 1467329746</identifier><identifier>EISBN: 1467329738</identifier><identifier>EISBN: 9781467329736</identifier><identifier>EISBN: 9781467329750</identifier><identifier>EISBN: 1467329754</identifier><identifier>DOI: 10.1109/SYSoSE.2012.6384178</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Character recognition ; Electronic nose ; Fire detection ; Fires ; Gas sensor ; Heating ; Humidity measurement ; Materials ; Microcontrollers ; Neural network</subject><ispartof>2012 7th International Conference on System of Systems Engineering (SoSE), 2012, p.253-257</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6384178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6384178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sadeghifard, S.</creatorcontrib><creatorcontrib>Esmaeilani, L.</creatorcontrib><title>A new embedded e-nose system to identify smell of smoke</title><title>2012 7th International Conference on System of Systems Engineering (SoSE)</title><addtitle>SYSoSE</addtitle><description>This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.</description><subject>Arrays</subject><subject>Character recognition</subject><subject>Electronic nose</subject><subject>Fire detection</subject><subject>Fires</subject><subject>Gas sensor</subject><subject>Heating</subject><subject>Humidity measurement</subject><subject>Materials</subject><subject>Microcontrollers</subject><subject>Neural network</subject><isbn>9781467329743</isbn><isbn>1467329746</isbn><isbn>1467329738</isbn><isbn>9781467329736</isbn><isbn>9781467329750</isbn><isbn>1467329754</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhUekoLZ5gm7mBRLnzv9dllK1UHCRblyVSecORPMjnYDk7S1Yz-Z8Z_PBYWwNogIQ-Fx_1GO9q6QAWVnlNTh_x55AW6ckOuXvWYHO_2-tHliR86e4xkujvHlkbsMH-uHUNxQjRU7lMGbiec4T9XwaeRtpmNo089xT1_ExXWH8ohVbpNBlKm69ZMeX3XH7Vh7eX_fbzaFsUUxlRJSEQtiGyFqMgfCclNYieA8GNMSQMFqCJhmI0VirziYEqa32YB2qJVv_aVsiOn1f2j5c5tPtqvoF-ktG_Q</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Sadeghifard, S.</creator><creator>Esmaeilani, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>A new embedded e-nose system to identify smell of smoke</title><author>Sadeghifard, S. ; Esmaeilani, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d992e9006bee669dae9cf3440a8815141daf9d6e1bf51dd5663c5aa2464816793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Character recognition</topic><topic>Electronic nose</topic><topic>Fire detection</topic><topic>Fires</topic><topic>Gas sensor</topic><topic>Heating</topic><topic>Humidity measurement</topic><topic>Materials</topic><topic>Microcontrollers</topic><topic>Neural network</topic><toplevel>online_resources</toplevel><creatorcontrib>Sadeghifard, S.</creatorcontrib><creatorcontrib>Esmaeilani, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadeghifard, S.</au><au>Esmaeilani, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new embedded e-nose system to identify smell of smoke</atitle><btitle>2012 7th International Conference on System of Systems Engineering (SoSE)</btitle><stitle>SYSoSE</stitle><date>2012-07</date><risdate>2012</risdate><spage>253</spage><epage>257</epage><pages>253-257</pages><isbn>9781467329743</isbn><isbn>1467329746</isbn><eisbn>1467329738</eisbn><eisbn>9781467329736</eisbn><eisbn>9781467329750</eisbn><eisbn>1467329754</eisbn><abstract>This work examines the important applications of modern electronic noses and focus on fire detection system due to advantages over classical method of detections. The three components of an electronic nose consist of sample handling; detection and data processing system are designed. These devices are typically array of sensors used to detect and distinguish odors precisely in complex samples and at low cost and capable of classifying smoke based on neural networks. The potential advantages of such an approach include, the ability to characterize complex mixtures without the need to identify and quantify individual components, Five commercial gas sensors (Figaro) with interesting cross sensitivity and low power consumption are used in sensor array; a micro-controller equipped with a compact flash memory assures data acquisition, analyzing procedures in real time. Signals from this sensor array have unique pattern and applied to the embedded system as inputs. The proposed method in this paper has 97.2% efficiency in smoke classification.</abstract><pub>IEEE</pub><doi>10.1109/SYSoSE.2012.6384178</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467329743 |
ispartof | 2012 7th International Conference on System of Systems Engineering (SoSE), 2012, p.253-257 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6384178 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arrays Character recognition Electronic nose Fire detection Fires Gas sensor Heating Humidity measurement Materials Microcontrollers Neural network |
title | A new embedded e-nose system to identify smell of smoke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20embedded%20e-nose%20system%20to%20identify%20smell%20of%20smoke&rft.btitle=2012%207th%20International%20Conference%20on%20System%20of%20Systems%20Engineering%20(SoSE)&rft.au=Sadeghifard,%20S.&rft.date=2012-07&rft.spage=253&rft.epage=257&rft.pages=253-257&rft.isbn=9781467329743&rft.isbn_list=1467329746&rft_id=info:doi/10.1109/SYSoSE.2012.6384178&rft_dat=%3Cieee_6IE%3E6384178%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467329738&rft.eisbn_list=9781467329736&rft.eisbn_list=9781467329750&rft.eisbn_list=1467329754&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6384178&rfr_iscdi=true |