Smart sensor data processing for aerospace applications in education illustrated by small satellite platform demonstrator
This article describes a tasks for undergraduate students from the area of signal processing that is often used in aerospace for data fusion of different kinds of sensors onboard of an airplane or a spacecraft. It includes a Kalman filter merging angular rates, accelerations and vector of the magnet...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10B5-8 |
---|---|
container_issue | |
container_start_page | 10B5-1 |
container_title | |
container_volume | |
creator | Paces, P. Popelka, J. Marchitto, E. Levora, T. |
description | This article describes a tasks for undergraduate students from the area of signal processing that is often used in aerospace for data fusion of different kinds of sensors onboard of an airplane or a spacecraft. It includes a Kalman filter merging angular rates, accelerations and vector of the magnetic field. These topics are illustrated on a remotely controlled educational platform and its internal Inertial Measurement Unit. The article describes a set of sequential topics that introduces students with Attitude Heading and Reference System data processing on a remotely controlled platform that contains all necessary sensors. The hands-on experiments with the remotely controlled platform presented in this article takes advantages of the existing technology and shifts the currently used educational approach to the more interactive level. We mainly describe an algorithm to calculate position angles from raw sensor data which is used within Attitude Heading and Reference Systems and we propose a new arrangement of the AHRS unit which uses self-calibrating magnetometer and the Pressure Reference System for pitch and roll angles measurements to remove influence of accelerations generated during the flight. |
doi_str_mv | 10.1109/DASC.2012.6382274 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6382274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6382274</ieee_id><sourcerecordid>6382274</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-fd7a23a3cacda42edc42aec3fe19b6ab64dbcac46a7253d2ecd95d0dcee9aac53</originalsourceid><addsrcrecordid>eNo1kMlqAzEQRJUN4jj-gJCLfmAcLSPN6GicFQw5ODmbHqknKGgWJPngv88E26em-nUVVBPywNmSc2aenlfb9VIwLpZa1kJU5QW546WuJNemNpdkJrhSRSWYuSILU9VnZvT1mXGjbskipV_GGGe10qqckcO2g5hpwj4NkTrIQMc4WEzJ9z-0nXaAcUgjWKQwjsFbyH7oE_U9Rbc_KupD2KccIaOjzYGmDkKgaZIh-Ix0DJCnqI467Cbv_-EQ78lNCyHh4jTn5Pv15Wv9Xmw-3z7Wq03heaVy0boKhARpwTooBTpbCkArW-Sm0dDo0jUTKzVUQkkn0DqjHHMW0QBYJefk8ZjrEXE3Rj8VPuxOX5R_oq9ngQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smart sensor data processing for aerospace applications in education illustrated by small satellite platform demonstrator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Paces, P. ; Popelka, J. ; Marchitto, E. ; Levora, T.</creator><creatorcontrib>Paces, P. ; Popelka, J. ; Marchitto, E. ; Levora, T.</creatorcontrib><description>This article describes a tasks for undergraduate students from the area of signal processing that is often used in aerospace for data fusion of different kinds of sensors onboard of an airplane or a spacecraft. It includes a Kalman filter merging angular rates, accelerations and vector of the magnetic field. These topics are illustrated on a remotely controlled educational platform and its internal Inertial Measurement Unit. The article describes a set of sequential topics that introduces students with Attitude Heading and Reference System data processing on a remotely controlled platform that contains all necessary sensors. The hands-on experiments with the remotely controlled platform presented in this article takes advantages of the existing technology and shifts the currently used educational approach to the more interactive level. We mainly describe an algorithm to calculate position angles from raw sensor data which is used within Attitude Heading and Reference Systems and we propose a new arrangement of the AHRS unit which uses self-calibrating magnetometer and the Pressure Reference System for pitch and roll angles measurements to remove influence of accelerations generated during the flight.</description><identifier>ISSN: 2155-7195</identifier><identifier>ISBN: 9781467316996</identifier><identifier>ISBN: 1467316997</identifier><identifier>EISSN: 2155-7209</identifier><identifier>EISBN: 1467316989</identifier><identifier>EISBN: 1467317004</identifier><identifier>EISBN: 9781467317009</identifier><identifier>EISBN: 9781467316989</identifier><identifier>DOI: 10.1109/DASC.2012.6382274</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airplanes ; Covariance matrix ; Kalman filters ; Magnetic sensors ; Position measurement ; Sensor systems</subject><ispartof>2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 2012, p.10B5-1-10B5-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6382274$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6382274$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paces, P.</creatorcontrib><creatorcontrib>Popelka, J.</creatorcontrib><creatorcontrib>Marchitto, E.</creatorcontrib><creatorcontrib>Levora, T.</creatorcontrib><title>Smart sensor data processing for aerospace applications in education illustrated by small satellite platform demonstrator</title><title>2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC)</title><addtitle>DASC</addtitle><description>This article describes a tasks for undergraduate students from the area of signal processing that is often used in aerospace for data fusion of different kinds of sensors onboard of an airplane or a spacecraft. It includes a Kalman filter merging angular rates, accelerations and vector of the magnetic field. These topics are illustrated on a remotely controlled educational platform and its internal Inertial Measurement Unit. The article describes a set of sequential topics that introduces students with Attitude Heading and Reference System data processing on a remotely controlled platform that contains all necessary sensors. The hands-on experiments with the remotely controlled platform presented in this article takes advantages of the existing technology and shifts the currently used educational approach to the more interactive level. We mainly describe an algorithm to calculate position angles from raw sensor data which is used within Attitude Heading and Reference Systems and we propose a new arrangement of the AHRS unit which uses self-calibrating magnetometer and the Pressure Reference System for pitch and roll angles measurements to remove influence of accelerations generated during the flight.</description><subject>Airplanes</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Magnetic sensors</subject><subject>Position measurement</subject><subject>Sensor systems</subject><issn>2155-7195</issn><issn>2155-7209</issn><isbn>9781467316996</isbn><isbn>1467316997</isbn><isbn>1467316989</isbn><isbn>1467317004</isbn><isbn>9781467317009</isbn><isbn>9781467316989</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlqAzEQRJUN4jj-gJCLfmAcLSPN6GicFQw5ODmbHqknKGgWJPngv88E26em-nUVVBPywNmSc2aenlfb9VIwLpZa1kJU5QW546WuJNemNpdkJrhSRSWYuSILU9VnZvT1mXGjbskipV_GGGe10qqckcO2g5hpwj4NkTrIQMc4WEzJ9z-0nXaAcUgjWKQwjsFbyH7oE_U9Rbc_KupD2KccIaOjzYGmDkKgaZIh-Ix0DJCnqI467Cbv_-EQ78lNCyHh4jTn5Pv15Wv9Xmw-3z7Wq03heaVy0boKhARpwTooBTpbCkArW-Sm0dDo0jUTKzVUQkkn0DqjHHMW0QBYJefk8ZjrEXE3Rj8VPuxOX5R_oq9ngQ</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Paces, P.</creator><creator>Popelka, J.</creator><creator>Marchitto, E.</creator><creator>Levora, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>Smart sensor data processing for aerospace applications in education illustrated by small satellite platform demonstrator</title><author>Paces, P. ; Popelka, J. ; Marchitto, E. ; Levora, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-fd7a23a3cacda42edc42aec3fe19b6ab64dbcac46a7253d2ecd95d0dcee9aac53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Airplanes</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Magnetic sensors</topic><topic>Position measurement</topic><topic>Sensor systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Paces, P.</creatorcontrib><creatorcontrib>Popelka, J.</creatorcontrib><creatorcontrib>Marchitto, E.</creatorcontrib><creatorcontrib>Levora, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paces, P.</au><au>Popelka, J.</au><au>Marchitto, E.</au><au>Levora, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smart sensor data processing for aerospace applications in education illustrated by small satellite platform demonstrator</atitle><btitle>2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC)</btitle><stitle>DASC</stitle><date>2012-10</date><risdate>2012</risdate><spage>10B5-1</spage><epage>10B5-8</epage><pages>10B5-1-10B5-8</pages><issn>2155-7195</issn><eissn>2155-7209</eissn><isbn>9781467316996</isbn><isbn>1467316997</isbn><eisbn>1467316989</eisbn><eisbn>1467317004</eisbn><eisbn>9781467317009</eisbn><eisbn>9781467316989</eisbn><abstract>This article describes a tasks for undergraduate students from the area of signal processing that is often used in aerospace for data fusion of different kinds of sensors onboard of an airplane or a spacecraft. It includes a Kalman filter merging angular rates, accelerations and vector of the magnetic field. These topics are illustrated on a remotely controlled educational platform and its internal Inertial Measurement Unit. The article describes a set of sequential topics that introduces students with Attitude Heading and Reference System data processing on a remotely controlled platform that contains all necessary sensors. The hands-on experiments with the remotely controlled platform presented in this article takes advantages of the existing technology and shifts the currently used educational approach to the more interactive level. We mainly describe an algorithm to calculate position angles from raw sensor data which is used within Attitude Heading and Reference Systems and we propose a new arrangement of the AHRS unit which uses self-calibrating magnetometer and the Pressure Reference System for pitch and roll angles measurements to remove influence of accelerations generated during the flight.</abstract><pub>IEEE</pub><doi>10.1109/DASC.2012.6382274</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-7195 |
ispartof | 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 2012, p.10B5-1-10B5-8 |
issn | 2155-7195 2155-7209 |
language | eng |
recordid | cdi_ieee_primary_6382274 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Airplanes Covariance matrix Kalman filters Magnetic sensors Position measurement Sensor systems |
title | Smart sensor data processing for aerospace applications in education illustrated by small satellite platform demonstrator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smart%20sensor%20data%20processing%20for%20aerospace%20applications%20in%20education%20illustrated%20by%20small%20satellite%20platform%20demonstrator&rft.btitle=2012%20IEEE/AIAA%2031st%20Digital%20Avionics%20Systems%20Conference%20(DASC)&rft.au=Paces,%20P.&rft.date=2012-10&rft.spage=10B5-1&rft.epage=10B5-8&rft.pages=10B5-1-10B5-8&rft.issn=2155-7195&rft.eissn=2155-7209&rft.isbn=9781467316996&rft.isbn_list=1467316997&rft_id=info:doi/10.1109/DASC.2012.6382274&rft_dat=%3Cieee_6IE%3E6382274%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467316989&rft.eisbn_list=1467317004&rft.eisbn_list=9781467317009&rft.eisbn_list=9781467316989&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6382274&rfr_iscdi=true |