Parameter estimation-based single image super resolution

In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yunsang Han, Tae Byeong Chae, Sangkeun Lee
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue
container_start_page 560
container_title
container_volume
creator Yunsang Han
Tae Byeong Chae
Sangkeun Lee
description In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.
doi_str_mv 10.1109/GCCE.2012.6379911
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6379911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6379911</ieee_id><sourcerecordid>6379911</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6abfc1cc529ebb9522baa7762c26a400ee28ed8414df0c8c4f23f075740ad6da3</originalsourceid><addsrcrecordid>eNo1kMtKA0EURNsXGGM-QNzMD_R47-33UoYYhYAusg89PXfCSF5MTxb-vSMmq4KqQ1GUEE8IJSKEl0VVzUsCpNIqFwLilXhAbZ1CHby9FhOyQUnwRt9cAgOAt2OgnJcetboXs5y_AYAMULA0Ef4r9nHHA_cF56HbxaE77GUdMzdF7vabLRejueEin44j03M-bE9_zKO4a-M28-ysU7F6m6-qd7n8XHxUr0vZBRikjXWbMCVDges6GKI6RucsJbJRAzCT58Zr1E0LySfdkmrBGachNraJaiqe_2s7Zl4f-3FM_7M-H6B-Aa56S2c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter estimation-based single image super resolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yunsang Han ; Tae Byeong Chae ; Sangkeun Lee</creator><creatorcontrib>Yunsang Han ; Tae Byeong Chae ; Sangkeun Lee</creatorcontrib><description>In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.</description><identifier>ISSN: 2378-8143</identifier><identifier>ISBN: 1467315001</identifier><identifier>ISBN: 9781467315005</identifier><identifier>EISSN: 2693-0854</identifier><identifier>EISBN: 1467314986</identifier><identifier>EISBN: 9781467314992</identifier><identifier>EISBN: 146731501X</identifier><identifier>EISBN: 9781467315012</identifier><identifier>EISBN: 9781467314985</identifier><identifier>EISBN: 1467314994</identifier><identifier>DOI: 10.1109/GCCE.2012.6379911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; Consumer electronics ; Estimation ; Image resolution ; Interpolation ; Morphological operations ; Parameter Estimation ; Resolution Enhancement ; Signal resolution ; Super Resolution</subject><ispartof>The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.560-563</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6379911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6379911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yunsang Han</creatorcontrib><creatorcontrib>Tae Byeong Chae</creatorcontrib><creatorcontrib>Sangkeun Lee</creatorcontrib><title>Parameter estimation-based single image super resolution</title><title>The 1st IEEE Global Conference on Consumer Electronics 2012</title><addtitle>GCCE</addtitle><description>In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.</description><subject>Complexity theory</subject><subject>Consumer electronics</subject><subject>Estimation</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Morphological operations</subject><subject>Parameter Estimation</subject><subject>Resolution Enhancement</subject><subject>Signal resolution</subject><subject>Super Resolution</subject><issn>2378-8143</issn><issn>2693-0854</issn><isbn>1467315001</isbn><isbn>9781467315005</isbn><isbn>1467314986</isbn><isbn>9781467314992</isbn><isbn>146731501X</isbn><isbn>9781467315012</isbn><isbn>9781467314985</isbn><isbn>1467314994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKA0EURNsXGGM-QNzMD_R47-33UoYYhYAusg89PXfCSF5MTxb-vSMmq4KqQ1GUEE8IJSKEl0VVzUsCpNIqFwLilXhAbZ1CHby9FhOyQUnwRt9cAgOAt2OgnJcetboXs5y_AYAMULA0Ef4r9nHHA_cF56HbxaE77GUdMzdF7vabLRejueEin44j03M-bE9_zKO4a-M28-ysU7F6m6-qd7n8XHxUr0vZBRikjXWbMCVDges6GKI6RucsJbJRAzCT58Zr1E0LySfdkmrBGachNraJaiqe_2s7Zl4f-3FM_7M-H6B-Aa56S2c</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Yunsang Han</creator><creator>Tae Byeong Chae</creator><creator>Sangkeun Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Parameter estimation-based single image super resolution</title><author>Yunsang Han ; Tae Byeong Chae ; Sangkeun Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6abfc1cc529ebb9522baa7762c26a400ee28ed8414df0c8c4f23f075740ad6da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Complexity theory</topic><topic>Consumer electronics</topic><topic>Estimation</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Morphological operations</topic><topic>Parameter Estimation</topic><topic>Resolution Enhancement</topic><topic>Signal resolution</topic><topic>Super Resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunsang Han</creatorcontrib><creatorcontrib>Tae Byeong Chae</creatorcontrib><creatorcontrib>Sangkeun Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunsang Han</au><au>Tae Byeong Chae</au><au>Sangkeun Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter estimation-based single image super resolution</atitle><btitle>The 1st IEEE Global Conference on Consumer Electronics 2012</btitle><stitle>GCCE</stitle><date>2012-10</date><risdate>2012</risdate><spage>560</spage><epage>563</epage><pages>560-563</pages><issn>2378-8143</issn><eissn>2693-0854</eissn><isbn>1467315001</isbn><isbn>9781467315005</isbn><eisbn>1467314986</eisbn><eisbn>9781467314992</eisbn><eisbn>146731501X</eisbn><eisbn>9781467315012</eisbn><eisbn>9781467314985</eisbn><eisbn>1467314994</eisbn><abstract>In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.</abstract><pub>IEEE</pub><doi>10.1109/GCCE.2012.6379911</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2378-8143
ispartof The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.560-563
issn 2378-8143
2693-0854
language eng
recordid cdi_ieee_primary_6379911
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Complexity theory
Consumer electronics
Estimation
Image resolution
Interpolation
Morphological operations
Parameter Estimation
Resolution Enhancement
Signal resolution
Super Resolution
title Parameter estimation-based single image super resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20estimation-based%20single%20image%20super%20resolution&rft.btitle=The%201st%20IEEE%20Global%20Conference%20on%20Consumer%20Electronics%202012&rft.au=Yunsang%20Han&rft.date=2012-10&rft.spage=560&rft.epage=563&rft.pages=560-563&rft.issn=2378-8143&rft.eissn=2693-0854&rft.isbn=1467315001&rft.isbn_list=9781467315005&rft_id=info:doi/10.1109/GCCE.2012.6379911&rft_dat=%3Cieee_6IE%3E6379911%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467314986&rft.eisbn_list=9781467314992&rft.eisbn_list=146731501X&rft.eisbn_list=9781467315012&rft.eisbn_list=9781467314985&rft.eisbn_list=1467314994&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6379911&rfr_iscdi=true