Parameter estimation-based single image super resolution
In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 563 |
---|---|
container_issue | |
container_start_page | 560 |
container_title | |
container_volume | |
creator | Yunsang Han Tae Byeong Chae Sangkeun Lee |
description | In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields. |
doi_str_mv | 10.1109/GCCE.2012.6379911 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6379911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6379911</ieee_id><sourcerecordid>6379911</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6abfc1cc529ebb9522baa7762c26a400ee28ed8414df0c8c4f23f075740ad6da3</originalsourceid><addsrcrecordid>eNo1kMtKA0EURNsXGGM-QNzMD_R47-33UoYYhYAusg89PXfCSF5MTxb-vSMmq4KqQ1GUEE8IJSKEl0VVzUsCpNIqFwLilXhAbZ1CHby9FhOyQUnwRt9cAgOAt2OgnJcetboXs5y_AYAMULA0Ef4r9nHHA_cF56HbxaE77GUdMzdF7vabLRejueEin44j03M-bE9_zKO4a-M28-ysU7F6m6-qd7n8XHxUr0vZBRikjXWbMCVDges6GKI6RucsJbJRAzCT58Zr1E0LySfdkmrBGachNraJaiqe_2s7Zl4f-3FM_7M-H6B-Aa56S2c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter estimation-based single image super resolution</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yunsang Han ; Tae Byeong Chae ; Sangkeun Lee</creator><creatorcontrib>Yunsang Han ; Tae Byeong Chae ; Sangkeun Lee</creatorcontrib><description>In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.</description><identifier>ISSN: 2378-8143</identifier><identifier>ISBN: 1467315001</identifier><identifier>ISBN: 9781467315005</identifier><identifier>EISSN: 2693-0854</identifier><identifier>EISBN: 1467314986</identifier><identifier>EISBN: 9781467314992</identifier><identifier>EISBN: 146731501X</identifier><identifier>EISBN: 9781467315012</identifier><identifier>EISBN: 9781467314985</identifier><identifier>EISBN: 1467314994</identifier><identifier>DOI: 10.1109/GCCE.2012.6379911</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; Consumer electronics ; Estimation ; Image resolution ; Interpolation ; Morphological operations ; Parameter Estimation ; Resolution Enhancement ; Signal resolution ; Super Resolution</subject><ispartof>The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.560-563</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6379911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6379911$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yunsang Han</creatorcontrib><creatorcontrib>Tae Byeong Chae</creatorcontrib><creatorcontrib>Sangkeun Lee</creatorcontrib><title>Parameter estimation-based single image super resolution</title><title>The 1st IEEE Global Conference on Consumer Electronics 2012</title><addtitle>GCCE</addtitle><description>In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.</description><subject>Complexity theory</subject><subject>Consumer electronics</subject><subject>Estimation</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Morphological operations</subject><subject>Parameter Estimation</subject><subject>Resolution Enhancement</subject><subject>Signal resolution</subject><subject>Super Resolution</subject><issn>2378-8143</issn><issn>2693-0854</issn><isbn>1467315001</isbn><isbn>9781467315005</isbn><isbn>1467314986</isbn><isbn>9781467314992</isbn><isbn>146731501X</isbn><isbn>9781467315012</isbn><isbn>9781467314985</isbn><isbn>1467314994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtKA0EURNsXGGM-QNzMD_R47-33UoYYhYAusg89PXfCSF5MTxb-vSMmq4KqQ1GUEE8IJSKEl0VVzUsCpNIqFwLilXhAbZ1CHby9FhOyQUnwRt9cAgOAt2OgnJcetboXs5y_AYAMULA0Ef4r9nHHA_cF56HbxaE77GUdMzdF7vabLRejueEin44j03M-bE9_zKO4a-M28-ysU7F6m6-qd7n8XHxUr0vZBRikjXWbMCVDges6GKI6RucsJbJRAzCT58Zr1E0LySfdkmrBGachNraJaiqe_2s7Zl4f-3FM_7M-H6B-Aa56S2c</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Yunsang Han</creator><creator>Tae Byeong Chae</creator><creator>Sangkeun Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Parameter estimation-based single image super resolution</title><author>Yunsang Han ; Tae Byeong Chae ; Sangkeun Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6abfc1cc529ebb9522baa7762c26a400ee28ed8414df0c8c4f23f075740ad6da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Complexity theory</topic><topic>Consumer electronics</topic><topic>Estimation</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Morphological operations</topic><topic>Parameter Estimation</topic><topic>Resolution Enhancement</topic><topic>Signal resolution</topic><topic>Super Resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunsang Han</creatorcontrib><creatorcontrib>Tae Byeong Chae</creatorcontrib><creatorcontrib>Sangkeun Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yunsang Han</au><au>Tae Byeong Chae</au><au>Sangkeun Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter estimation-based single image super resolution</atitle><btitle>The 1st IEEE Global Conference on Consumer Electronics 2012</btitle><stitle>GCCE</stitle><date>2012-10</date><risdate>2012</risdate><spage>560</spage><epage>563</epage><pages>560-563</pages><issn>2378-8143</issn><eissn>2693-0854</eissn><isbn>1467315001</isbn><isbn>9781467315005</isbn><eisbn>1467314986</eisbn><eisbn>9781467314992</eisbn><eisbn>146731501X</eisbn><eisbn>9781467315012</eisbn><eisbn>9781467314985</eisbn><eisbn>1467314994</eisbn><abstract>In this paper, we introduce a parameter estimation-based single image super resolution technique. The basic idea of the proposed method is to use the property of unknown high resolution image inferred by relations of its lower resolution images. The proposed algorithm is consists of 3 main phases: 1) in the first step, an error model between an input and its lower resolution images is constructed for inferring the property of unknown high resolution image; 2) In the second step, global enhancement using estimated signal complexity and its strength is performed. 3) Lastly, independent enhancement in artifact candidate regions is performed in estimated artifact candidate regions with artifact removal using property of morphological operation. The experimental results show the efficiency of the proposed algorithm compared to a state-of-the-art method. Besides, the proposed method is not only much faster than the compared method but also able to implement in hard ware such as digital TVs and smart phones. Therefore, we believe that the proposed method can be a useful tool for super resolution-related consumer electronics fields.</abstract><pub>IEEE</pub><doi>10.1109/GCCE.2012.6379911</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2378-8143 |
ispartof | The 1st IEEE Global Conference on Consumer Electronics 2012, 2012, p.560-563 |
issn | 2378-8143 2693-0854 |
language | eng |
recordid | cdi_ieee_primary_6379911 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Complexity theory Consumer electronics Estimation Image resolution Interpolation Morphological operations Parameter Estimation Resolution Enhancement Signal resolution Super Resolution |
title | Parameter estimation-based single image super resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20estimation-based%20single%20image%20super%20resolution&rft.btitle=The%201st%20IEEE%20Global%20Conference%20on%20Consumer%20Electronics%202012&rft.au=Yunsang%20Han&rft.date=2012-10&rft.spage=560&rft.epage=563&rft.pages=560-563&rft.issn=2378-8143&rft.eissn=2693-0854&rft.isbn=1467315001&rft.isbn_list=9781467315005&rft_id=info:doi/10.1109/GCCE.2012.6379911&rft_dat=%3Cieee_6IE%3E6379911%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467314986&rft.eisbn_list=9781467314992&rft.eisbn_list=146731501X&rft.eisbn_list=9781467315012&rft.eisbn_list=9781467314985&rft.eisbn_list=1467314994&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6379911&rfr_iscdi=true |