A PSO-based document classification algorithm accelerated by the CUDA Platform

Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Platos, J., Snasel, V., Jezowicz, T., Kromer, P., Abraham, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1941
container_issue
container_start_page 1936
container_title
container_volume
creator Platos, J.
Snasel, V.
Jezowicz, T.
Kromer, P.
Abraham, A.
description Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.
doi_str_mv 10.1109/ICSMC.2012.6378021
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6378021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6378021</ieee_id><sourcerecordid>6378021</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-cbfd6736d188004d856efd11c9d88c001a90172347e3adc41fb5989ee5f9dd993</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39Adj4B1LutZ3YXlahQKVCkUoldpXjBzVKGpSYRf-eSJTVLM7oaDSE3CLMEEHfL8vNSzljgGxWcKmA4RkZoygkR4lCnJMRy6XMsMjzCzLVUv0zri_JCKFgmWbs45qM-_4LgIFANSKvc_q2WWeV6b2jrrU_jT8kamvT9zFEa1JsD9TUn20X076hxlpf-86koV0dadp7Wm4fBkdtUmi75oZcBVP3fnrKCdk-Lt7L52y1flqW81UWmcCU2Sq4YVzhUCkA4VRe-OAQrXZKWQA0GlAyLqTnxlmBocq10t7nQTunNZ-Quz9v9N7vvrvYmO64O_3CfwFCXVI9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A PSO-based document classification algorithm accelerated by the CUDA Platform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Platos, J. ; Snasel, V. ; Jezowicz, T. ; Kromer, P. ; Abraham, A.</creator><creatorcontrib>Platos, J. ; Snasel, V. ; Jezowicz, T. ; Kromer, P. ; Abraham, A.</creatorcontrib><description>Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781467317139</identifier><identifier>ISBN: 1467317136</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1467317144</identifier><identifier>EISBN: 9781467317122</identifier><identifier>EISBN: 9781467317146</identifier><identifier>EISBN: 1467317128</identifier><identifier>DOI: 10.1109/ICSMC.2012.6378021</identifier><language>eng</language><publisher>IEEE</publisher><subject>document classification ; gpu ; Graphics processing units ; Iris ; Kernel ; optimization ; Particle swarm optimization ; Testing ; Training ; Vectors</subject><ispartof>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.1936-1941</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6378021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6378021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Platos, J.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Jezowicz, T.</creatorcontrib><creatorcontrib>Kromer, P.</creatorcontrib><creatorcontrib>Abraham, A.</creatorcontrib><title>A PSO-based document classification algorithm accelerated by the CUDA Platform</title><title>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>ICSMC</addtitle><description>Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.</description><subject>document classification</subject><subject>gpu</subject><subject>Graphics processing units</subject><subject>Iris</subject><subject>Kernel</subject><subject>optimization</subject><subject>Particle swarm optimization</subject><subject>Testing</subject><subject>Training</subject><subject>Vectors</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781467317139</isbn><isbn>1467317136</isbn><isbn>1467317144</isbn><isbn>9781467317122</isbn><isbn>9781467317146</isbn><isbn>1467317128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39Adj4B1LutZ3YXlahQKVCkUoldpXjBzVKGpSYRf-eSJTVLM7oaDSE3CLMEEHfL8vNSzljgGxWcKmA4RkZoygkR4lCnJMRy6XMsMjzCzLVUv0zri_JCKFgmWbs45qM-_4LgIFANSKvc_q2WWeV6b2jrrU_jT8kamvT9zFEa1JsD9TUn20X076hxlpf-86koV0dadp7Wm4fBkdtUmi75oZcBVP3fnrKCdk-Lt7L52y1flqW81UWmcCU2Sq4YVzhUCkA4VRe-OAQrXZKWQA0GlAyLqTnxlmBocq10t7nQTunNZ-Quz9v9N7vvrvYmO64O_3CfwFCXVI9</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Platos, J.</creator><creator>Snasel, V.</creator><creator>Jezowicz, T.</creator><creator>Kromer, P.</creator><creator>Abraham, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>A PSO-based document classification algorithm accelerated by the CUDA Platform</title><author>Platos, J. ; Snasel, V. ; Jezowicz, T. ; Kromer, P. ; Abraham, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-cbfd6736d188004d856efd11c9d88c001a90172347e3adc41fb5989ee5f9dd993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>document classification</topic><topic>gpu</topic><topic>Graphics processing units</topic><topic>Iris</topic><topic>Kernel</topic><topic>optimization</topic><topic>Particle swarm optimization</topic><topic>Testing</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Platos, J.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Jezowicz, T.</creatorcontrib><creatorcontrib>Kromer, P.</creatorcontrib><creatorcontrib>Abraham, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Platos, J.</au><au>Snasel, V.</au><au>Jezowicz, T.</au><au>Kromer, P.</au><au>Abraham, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A PSO-based document classification algorithm accelerated by the CUDA Platform</atitle><btitle>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>ICSMC</stitle><date>2012-10</date><risdate>2012</risdate><spage>1936</spage><epage>1941</epage><pages>1936-1941</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781467317139</isbn><isbn>1467317136</isbn><eisbn>1467317144</eisbn><eisbn>9781467317122</eisbn><eisbn>9781467317146</eisbn><eisbn>1467317128</eisbn><abstract>Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2012.6378021</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.1936-1941
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_6378021
source IEEE Electronic Library (IEL) Conference Proceedings
subjects document classification
gpu
Graphics processing units
Iris
Kernel
optimization
Particle swarm optimization
Testing
Training
Vectors
title A PSO-based document classification algorithm accelerated by the CUDA Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20PSO-based%20document%20classification%20algorithm%20accelerated%20by%20the%20CUDA%20Platform&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Platos,%20J.&rft.date=2012-10&rft.spage=1936&rft.epage=1941&rft.pages=1936-1941&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781467317139&rft.isbn_list=1467317136&rft_id=info:doi/10.1109/ICSMC.2012.6378021&rft_dat=%3Cieee_6IE%3E6378021%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467317144&rft.eisbn_list=9781467317122&rft.eisbn_list=9781467317146&rft.eisbn_list=1467317128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6378021&rfr_iscdi=true