A PSO-based document classification algorithm accelerated by the CUDA Platform
Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1941 |
---|---|
container_issue | |
container_start_page | 1936 |
container_title | |
container_volume | |
creator | Platos, J. Snasel, V. Jezowicz, T. Kromer, P. Abraham, A. |
description | Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs. |
doi_str_mv | 10.1109/ICSMC.2012.6378021 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6378021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6378021</ieee_id><sourcerecordid>6378021</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-cbfd6736d188004d856efd11c9d88c001a90172347e3adc41fb5989ee5f9dd993</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39Adj4B1LutZ3YXlahQKVCkUoldpXjBzVKGpSYRf-eSJTVLM7oaDSE3CLMEEHfL8vNSzljgGxWcKmA4RkZoygkR4lCnJMRy6XMsMjzCzLVUv0zri_JCKFgmWbs45qM-_4LgIFANSKvc_q2WWeV6b2jrrU_jT8kamvT9zFEa1JsD9TUn20X076hxlpf-86koV0dadp7Wm4fBkdtUmi75oZcBVP3fnrKCdk-Lt7L52y1flqW81UWmcCU2Sq4YVzhUCkA4VRe-OAQrXZKWQA0GlAyLqTnxlmBocq10t7nQTunNZ-Quz9v9N7vvrvYmO64O_3CfwFCXVI9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A PSO-based document classification algorithm accelerated by the CUDA Platform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Platos, J. ; Snasel, V. ; Jezowicz, T. ; Kromer, P. ; Abraham, A.</creator><creatorcontrib>Platos, J. ; Snasel, V. ; Jezowicz, T. ; Kromer, P. ; Abraham, A.</creatorcontrib><description>Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781467317139</identifier><identifier>ISBN: 1467317136</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1467317144</identifier><identifier>EISBN: 9781467317122</identifier><identifier>EISBN: 9781467317146</identifier><identifier>EISBN: 1467317128</identifier><identifier>DOI: 10.1109/ICSMC.2012.6378021</identifier><language>eng</language><publisher>IEEE</publisher><subject>document classification ; gpu ; Graphics processing units ; Iris ; Kernel ; optimization ; Particle swarm optimization ; Testing ; Training ; Vectors</subject><ispartof>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.1936-1941</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6378021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6378021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Platos, J.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Jezowicz, T.</creatorcontrib><creatorcontrib>Kromer, P.</creatorcontrib><creatorcontrib>Abraham, A.</creatorcontrib><title>A PSO-based document classification algorithm accelerated by the CUDA Platform</title><title>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>ICSMC</addtitle><description>Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.</description><subject>document classification</subject><subject>gpu</subject><subject>Graphics processing units</subject><subject>Iris</subject><subject>Kernel</subject><subject>optimization</subject><subject>Particle swarm optimization</subject><subject>Testing</subject><subject>Training</subject><subject>Vectors</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781467317139</isbn><isbn>1467317136</isbn><isbn>1467317144</isbn><isbn>9781467317122</isbn><isbn>9781467317146</isbn><isbn>1467317128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39Adj4B1LutZ3YXlahQKVCkUoldpXjBzVKGpSYRf-eSJTVLM7oaDSE3CLMEEHfL8vNSzljgGxWcKmA4RkZoygkR4lCnJMRy6XMsMjzCzLVUv0zri_JCKFgmWbs45qM-_4LgIFANSKvc_q2WWeV6b2jrrU_jT8kamvT9zFEa1JsD9TUn20X076hxlpf-86koV0dadp7Wm4fBkdtUmi75oZcBVP3fnrKCdk-Lt7L52y1flqW81UWmcCU2Sq4YVzhUCkA4VRe-OAQrXZKWQA0GlAyLqTnxlmBocq10t7nQTunNZ-Quz9v9N7vvrvYmO64O_3CfwFCXVI9</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Platos, J.</creator><creator>Snasel, V.</creator><creator>Jezowicz, T.</creator><creator>Kromer, P.</creator><creator>Abraham, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>A PSO-based document classification algorithm accelerated by the CUDA Platform</title><author>Platos, J. ; Snasel, V. ; Jezowicz, T. ; Kromer, P. ; Abraham, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-cbfd6736d188004d856efd11c9d88c001a90172347e3adc41fb5989ee5f9dd993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>document classification</topic><topic>gpu</topic><topic>Graphics processing units</topic><topic>Iris</topic><topic>Kernel</topic><topic>optimization</topic><topic>Particle swarm optimization</topic><topic>Testing</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Platos, J.</creatorcontrib><creatorcontrib>Snasel, V.</creatorcontrib><creatorcontrib>Jezowicz, T.</creatorcontrib><creatorcontrib>Kromer, P.</creatorcontrib><creatorcontrib>Abraham, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Platos, J.</au><au>Snasel, V.</au><au>Jezowicz, T.</au><au>Kromer, P.</au><au>Abraham, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A PSO-based document classification algorithm accelerated by the CUDA Platform</atitle><btitle>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>ICSMC</stitle><date>2012-10</date><risdate>2012</risdate><spage>1936</spage><epage>1941</epage><pages>1936-1941</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781467317139</isbn><isbn>1467317136</isbn><eisbn>1467317144</eisbn><eisbn>9781467317122</eisbn><eisbn>9781467317146</eisbn><eisbn>1467317128</eisbn><abstract>Document classification is a well-known problem that is focused on assigning predefined labels or categories to the documents found in the searched collection. Many classical algorithms were developed for solving of this problem. They usually have large time complexity and with increasing number of documents it is necessary to find algorithm which are able to find solution in reasonable time. Such algorithms are usually inspired by biological processes. Even such meta-heuristics algorithms become too slow when the number of documents is really large and it is necessary to optimize them for faster processing. This paper describes a document classification algorithm based on Particle Swarm Optimization with implementation of one and two GPUs.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2012.6378021</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.1936-1941 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_6378021 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | document classification gpu Graphics processing units Iris Kernel optimization Particle swarm optimization Testing Training Vectors |
title | A PSO-based document classification algorithm accelerated by the CUDA Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20PSO-based%20document%20classification%20algorithm%20accelerated%20by%20the%20CUDA%20Platform&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Platos,%20J.&rft.date=2012-10&rft.spage=1936&rft.epage=1941&rft.pages=1936-1941&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781467317139&rft.isbn_list=1467317136&rft_id=info:doi/10.1109/ICSMC.2012.6378021&rft_dat=%3Cieee_6IE%3E6378021%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467317144&rft.eisbn_list=9781467317122&rft.eisbn_list=9781467317146&rft.eisbn_list=1467317128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6378021&rfr_iscdi=true |