A weighted variational method for the removal of mixed noise

In this paper the authors present a novel variational method for the reconstruction of images corrupted by non-uniformly distributed noise. The additive noise model has been studied extensively, using variational techniques such as the Rudin, Osher and Fatemi model. However, the reconstruction of im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barcelos, C. A. Z., Barcelos, E. Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue
container_start_page 496
container_title
container_volume
creator Barcelos, C. A. Z.
Barcelos, E. Z.
description In this paper the authors present a novel variational method for the reconstruction of images corrupted by non-uniformly distributed noise. The additive noise model has been studied extensively, using variational techniques such as the Rudin, Osher and Fatemi model. However, the reconstruction of images corrupted by non-Gaussian noise has not yet been thoroughly studied. The proposed model includes a balance between the data term and the regularization term in the energy functional, taking into account the statistical control of the parameters and the position of the noisy points related to the edges presented in the image. The parameters are determined by the given observed noisy image. The obtained results have shown the effectiveness and robustness in restoring images with multiplicative noise or mixed Gaussian noise, while preserving edges and small structures belonging to the image.
doi_str_mv 10.1109/ICSMC.2012.6377773
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6377773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6377773</ieee_id><sourcerecordid>6377773</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ef3b1c44b36977cd74f4bead80f357dab5ed3699d02874beee5f5811cf9b7eab3</originalsourceid><addsrcrecordid>eNo1kEtLw0AUhccXmNb-Ad3MH0icO4_cDLgpwUeh4kIFd2WSuWNGmkaSUPXfG7CezYHzHc7iMHYJIgMQ9npVPj-WmRQgs1zhJHXEZqBzVICg9TFLpEFMITfmhC0sFv9M2VOWgMhlaqV8O2ezYfgQQgoNRcJulvyL4nszkud710c3xm7ntrylsek8D13Px4Z4T223n-Iu8DZ-T91dFwe6YGfBbQdaHHzOXu9uX8qHdP10vyqX6zQCmjGloCqota5UbhFrjzroipwvRFAGvasM-QlZL2SBEyEywRQAdbAVkqvUnF397caJbT772Lr-Z3N4Qf0Cc-ZNXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A weighted variational method for the removal of mixed noise</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barcelos, C. A. Z. ; Barcelos, E. Z.</creator><creatorcontrib>Barcelos, C. A. Z. ; Barcelos, E. Z.</creatorcontrib><description>In this paper the authors present a novel variational method for the reconstruction of images corrupted by non-uniformly distributed noise. The additive noise model has been studied extensively, using variational techniques such as the Rudin, Osher and Fatemi model. However, the reconstruction of images corrupted by non-Gaussian noise has not yet been thoroughly studied. The proposed model includes a balance between the data term and the regularization term in the energy functional, taking into account the statistical control of the parameters and the position of the noisy points related to the edges presented in the image. The parameters are determined by the given observed noisy image. The obtained results have shown the effectiveness and robustness in restoring images with multiplicative noise or mixed Gaussian noise, while preserving edges and small structures belonging to the image.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 9781467317139</identifier><identifier>ISBN: 1467317136</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1467317144</identifier><identifier>EISBN: 9781467317122</identifier><identifier>EISBN: 9781467317146</identifier><identifier>EISBN: 1467317128</identifier><identifier>DOI: 10.1109/ICSMC.2012.6377773</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image denoising ; Image edge detection ; Image reconstruction ; Impulsive noise ; Mathematical model ; Mixed noise ; Mixture of Gaussians ; Noise ; Noise measurement ; Noise reduction ; Speckle ; Variational pde model</subject><ispartof>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.496-501</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6377773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6377773$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barcelos, C. A. Z.</creatorcontrib><creatorcontrib>Barcelos, E. Z.</creatorcontrib><title>A weighted variational method for the removal of mixed noise</title><title>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</title><addtitle>ICSMC</addtitle><description>In this paper the authors present a novel variational method for the reconstruction of images corrupted by non-uniformly distributed noise. The additive noise model has been studied extensively, using variational techniques such as the Rudin, Osher and Fatemi model. However, the reconstruction of images corrupted by non-Gaussian noise has not yet been thoroughly studied. The proposed model includes a balance between the data term and the regularization term in the energy functional, taking into account the statistical control of the parameters and the position of the noisy points related to the edges presented in the image. The parameters are determined by the given observed noisy image. The obtained results have shown the effectiveness and robustness in restoring images with multiplicative noise or mixed Gaussian noise, while preserving edges and small structures belonging to the image.</description><subject>Image denoising</subject><subject>Image edge detection</subject><subject>Image reconstruction</subject><subject>Impulsive noise</subject><subject>Mathematical model</subject><subject>Mixed noise</subject><subject>Mixture of Gaussians</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Speckle</subject><subject>Variational pde model</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>9781467317139</isbn><isbn>1467317136</isbn><isbn>1467317144</isbn><isbn>9781467317122</isbn><isbn>9781467317146</isbn><isbn>1467317128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLw0AUhccXmNb-Ad3MH0icO4_cDLgpwUeh4kIFd2WSuWNGmkaSUPXfG7CezYHzHc7iMHYJIgMQ9npVPj-WmRQgs1zhJHXEZqBzVICg9TFLpEFMITfmhC0sFv9M2VOWgMhlaqV8O2ezYfgQQgoNRcJulvyL4nszkud710c3xm7ntrylsek8D13Px4Z4T223n-Iu8DZ-T91dFwe6YGfBbQdaHHzOXu9uX8qHdP10vyqX6zQCmjGloCqota5UbhFrjzroipwvRFAGvasM-QlZL2SBEyEywRQAdbAVkqvUnF397caJbT772Lr-Z3N4Qf0Cc-ZNXg</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Barcelos, C. A. Z.</creator><creator>Barcelos, E. Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201210</creationdate><title>A weighted variational method for the removal of mixed noise</title><author>Barcelos, C. A. Z. ; Barcelos, E. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ef3b1c44b36977cd74f4bead80f357dab5ed3699d02874beee5f5811cf9b7eab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Image denoising</topic><topic>Image edge detection</topic><topic>Image reconstruction</topic><topic>Impulsive noise</topic><topic>Mathematical model</topic><topic>Mixed noise</topic><topic>Mixture of Gaussians</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Speckle</topic><topic>Variational pde model</topic><toplevel>online_resources</toplevel><creatorcontrib>Barcelos, C. A. Z.</creatorcontrib><creatorcontrib>Barcelos, E. Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barcelos, C. A. Z.</au><au>Barcelos, E. Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A weighted variational method for the removal of mixed noise</atitle><btitle>2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)</btitle><stitle>ICSMC</stitle><date>2012-10</date><risdate>2012</risdate><spage>496</spage><epage>501</epage><pages>496-501</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>9781467317139</isbn><isbn>1467317136</isbn><eisbn>1467317144</eisbn><eisbn>9781467317122</eisbn><eisbn>9781467317146</eisbn><eisbn>1467317128</eisbn><abstract>In this paper the authors present a novel variational method for the reconstruction of images corrupted by non-uniformly distributed noise. The additive noise model has been studied extensively, using variational techniques such as the Rudin, Osher and Fatemi model. However, the reconstruction of images corrupted by non-Gaussian noise has not yet been thoroughly studied. The proposed model includes a balance between the data term and the regularization term in the energy functional, taking into account the statistical control of the parameters and the position of the noisy points related to the edges presented in the image. The parameters are determined by the given observed noisy image. The obtained results have shown the effectiveness and robustness in restoring images with multiplicative noise or mixed Gaussian noise, while preserving edges and small structures belonging to the image.</abstract><pub>IEEE</pub><doi>10.1109/ICSMC.2012.6377773</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, p.496-501
issn 1062-922X
2577-1655
language eng
recordid cdi_ieee_primary_6377773
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image denoising
Image edge detection
Image reconstruction
Impulsive noise
Mathematical model
Mixed noise
Mixture of Gaussians
Noise
Noise measurement
Noise reduction
Speckle
Variational pde model
title A weighted variational method for the removal of mixed noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20weighted%20variational%20method%20for%20the%20removal%20of%20mixed%20noise&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics%20(SMC)&rft.au=Barcelos,%20C.%20A.%20Z.&rft.date=2012-10&rft.spage=496&rft.epage=501&rft.pages=496-501&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=9781467317139&rft.isbn_list=1467317136&rft_id=info:doi/10.1109/ICSMC.2012.6377773&rft_dat=%3Cieee_6IE%3E6377773%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467317144&rft.eisbn_list=9781467317122&rft.eisbn_list=9781467317146&rft.eisbn_list=1467317128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6377773&rfr_iscdi=true