Cross-language phoneme recognition for under-resourced languages

In the present research, we explore several methods for transforming phoneme models from a language with acoustic models that have been trained (source language) to another, untrained language (target language). One approach uses acoustic distance-measures to automatically define the mapping from so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lotner, N., Tetariy, E., Silber-Varod, V., Aharonson, V., Moyal, A., Bar-Yosef, Y., Opher, I., Aloni-Lavi, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Lotner, N.
Tetariy, E.
Silber-Varod, V.
Aharonson, V.
Moyal, A.
Bar-Yosef, Y.
Opher, I.
Aloni-Lavi, R.
description In the present research, we explore several methods for transforming phoneme models from a language with acoustic models that have been trained (source language) to another, untrained language (target language). One approach uses acoustic distance-measures to automatically define the mapping from source to target phonemes. This is achieved by training basic models for the target language using a limited amount of training data and calculating the distance between the source models and target models. Naturally this approach requires some data from the target language. Another approach, which also requires some data from the target language, is to use acoustic adaptation for augmenting the source language acoustic models to better match the acoustic properties of the data in the target language. Phoneme recognition results of these approaches are compared to a reference recognizer that is well-trained on the target language.
doi_str_mv 10.1109/EEEI.2012.6376993
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6376993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6376993</ieee_id><sourcerecordid>6376993</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c940ee21ab73aae832ea226c8152aaa20380dd01ba90c437a78172e8887ecaf23</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUekoNY8gLjJCyTeuZPOz04JsRYKbrovt5ObNNJmykyz8O0t2K4OZ_F9nCPEi4RSSnBvTdOsSgSJpVZGO6fuxJOstFGVtoD3InPG3jouHkSW0g8AXFhtlXsU73UMKRUHGvuJes5P-zDykfPIPvTjcB7CmHch5tPYciwipzBFz21-A9KzmHV0SJxdcy42n82m_irW38tV_bEuBgfnwrsKmFHSzigitgqZELW3coFEhKAstC3IHTnwlTJ0WW2QrbWGPXWo5uL1Xzsw8_YUhyPF3-31s_oD8RFK8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cross-language phoneme recognition for under-resourced languages</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lotner, N. ; Tetariy, E. ; Silber-Varod, V. ; Aharonson, V. ; Moyal, A. ; Bar-Yosef, Y. ; Opher, I. ; Aloni-Lavi, R.</creator><creatorcontrib>Lotner, N. ; Tetariy, E. ; Silber-Varod, V. ; Aharonson, V. ; Moyal, A. ; Bar-Yosef, Y. ; Opher, I. ; Aloni-Lavi, R.</creatorcontrib><description>In the present research, we explore several methods for transforming phoneme models from a language with acoustic models that have been trained (source language) to another, untrained language (target language). One approach uses acoustic distance-measures to automatically define the mapping from source to target phonemes. This is achieved by training basic models for the target language using a limited amount of training data and calculating the distance between the source models and target models. Naturally this approach requires some data from the target language. Another approach, which also requires some data from the target language, is to use acoustic adaptation for augmenting the source language acoustic models to better match the acoustic properties of the data in the target language. Phoneme recognition results of these approaches are compared to a reference recognizer that is well-trained on the target language.</description><identifier>ISBN: 9781467346825</identifier><identifier>ISBN: 1467346829</identifier><identifier>EISBN: 1467346802</identifier><identifier>EISBN: 9781467346801</identifier><identifier>EISBN: 9781467346818</identifier><identifier>EISBN: 1467346810</identifier><identifier>DOI: 10.1109/EEEI.2012.6376993</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Adaptation models ; Data models ; Hidden Markov models ; Speech ; Speech recognition ; Target recognition</subject><ispartof>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6376993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6376993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lotner, N.</creatorcontrib><creatorcontrib>Tetariy, E.</creatorcontrib><creatorcontrib>Silber-Varod, V.</creatorcontrib><creatorcontrib>Aharonson, V.</creatorcontrib><creatorcontrib>Moyal, A.</creatorcontrib><creatorcontrib>Bar-Yosef, Y.</creatorcontrib><creatorcontrib>Opher, I.</creatorcontrib><creatorcontrib>Aloni-Lavi, R.</creatorcontrib><title>Cross-language phoneme recognition for under-resourced languages</title><title>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel</title><addtitle>EEEI</addtitle><description>In the present research, we explore several methods for transforming phoneme models from a language with acoustic models that have been trained (source language) to another, untrained language (target language). One approach uses acoustic distance-measures to automatically define the mapping from source to target phonemes. This is achieved by training basic models for the target language using a limited amount of training data and calculating the distance between the source models and target models. Naturally this approach requires some data from the target language. Another approach, which also requires some data from the target language, is to use acoustic adaptation for augmenting the source language acoustic models to better match the acoustic properties of the data in the target language. Phoneme recognition results of these approaches are compared to a reference recognizer that is well-trained on the target language.</description><subject>Acoustics</subject><subject>Adaptation models</subject><subject>Data models</subject><subject>Hidden Markov models</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Target recognition</subject><isbn>9781467346825</isbn><isbn>1467346829</isbn><isbn>1467346802</isbn><isbn>9781467346801</isbn><isbn>9781467346818</isbn><isbn>1467346810</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81Kw0AUhUekoNY8gLjJCyTeuZPOz04JsRYKbrovt5ObNNJmykyz8O0t2K4OZ_F9nCPEi4RSSnBvTdOsSgSJpVZGO6fuxJOstFGVtoD3InPG3jouHkSW0g8AXFhtlXsU73UMKRUHGvuJes5P-zDykfPIPvTjcB7CmHch5tPYciwipzBFz21-A9KzmHV0SJxdcy42n82m_irW38tV_bEuBgfnwrsKmFHSzigitgqZELW3coFEhKAstC3IHTnwlTJ0WW2QrbWGPXWo5uL1Xzsw8_YUhyPF3-31s_oD8RFK8A</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Lotner, N.</creator><creator>Tetariy, E.</creator><creator>Silber-Varod, V.</creator><creator>Aharonson, V.</creator><creator>Moyal, A.</creator><creator>Bar-Yosef, Y.</creator><creator>Opher, I.</creator><creator>Aloni-Lavi, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Cross-language phoneme recognition for under-resourced languages</title><author>Lotner, N. ; Tetariy, E. ; Silber-Varod, V. ; Aharonson, V. ; Moyal, A. ; Bar-Yosef, Y. ; Opher, I. ; Aloni-Lavi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c940ee21ab73aae832ea226c8152aaa20380dd01ba90c437a78172e8887ecaf23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Adaptation models</topic><topic>Data models</topic><topic>Hidden Markov models</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Target recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Lotner, N.</creatorcontrib><creatorcontrib>Tetariy, E.</creatorcontrib><creatorcontrib>Silber-Varod, V.</creatorcontrib><creatorcontrib>Aharonson, V.</creatorcontrib><creatorcontrib>Moyal, A.</creatorcontrib><creatorcontrib>Bar-Yosef, Y.</creatorcontrib><creatorcontrib>Opher, I.</creatorcontrib><creatorcontrib>Aloni-Lavi, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lotner, N.</au><au>Tetariy, E.</au><au>Silber-Varod, V.</au><au>Aharonson, V.</au><au>Moyal, A.</au><au>Bar-Yosef, Y.</au><au>Opher, I.</au><au>Aloni-Lavi, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cross-language phoneme recognition for under-resourced languages</atitle><btitle>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel</btitle><stitle>EEEI</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467346825</isbn><isbn>1467346829</isbn><eisbn>1467346802</eisbn><eisbn>9781467346801</eisbn><eisbn>9781467346818</eisbn><eisbn>1467346810</eisbn><abstract>In the present research, we explore several methods for transforming phoneme models from a language with acoustic models that have been trained (source language) to another, untrained language (target language). One approach uses acoustic distance-measures to automatically define the mapping from source to target phonemes. This is achieved by training basic models for the target language using a limited amount of training data and calculating the distance between the source models and target models. Naturally this approach requires some data from the target language. Another approach, which also requires some data from the target language, is to use acoustic adaptation for augmenting the source language acoustic models to better match the acoustic properties of the data in the target language. Phoneme recognition results of these approaches are compared to a reference recognizer that is well-trained on the target language.</abstract><pub>IEEE</pub><doi>10.1109/EEEI.2012.6376993</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467346825
ispartof 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, p.1-5
issn
language eng
recordid cdi_ieee_primary_6376993
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustics
Adaptation models
Data models
Hidden Markov models
Speech
Speech recognition
Target recognition
title Cross-language phoneme recognition for under-resourced languages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cross-language%20phoneme%20recognition%20for%20under-resourced%20languages&rft.btitle=2012%20IEEE%2027th%20Convention%20of%20Electrical%20and%20Electronics%20Engineers%20in%20Israel&rft.au=Lotner,%20N.&rft.date=2012-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467346825&rft.isbn_list=1467346829&rft_id=info:doi/10.1109/EEEI.2012.6376993&rft_dat=%3Cieee_6IE%3E6376993%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467346802&rft.eisbn_list=9781467346801&rft.eisbn_list=9781467346818&rft.eisbn_list=1467346810&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6376993&rfr_iscdi=true