Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics

In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Juefei-Xu, F., Bhagavatula, C., Jaech, A., Prasad, U., Savvides, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 8
container_title
container_volume
creator Juefei-Xu, F.
Bhagavatula, C.
Jaech, A.
Prasad, U.
Savvides, M.
description In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.
doi_str_mv 10.1109/BTAS.2012.6374552
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6374552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6374552</ieee_id><sourcerecordid>6374552</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a9cc13c290bacd72c7604484feecf84c51b4d71d7eeeae78abe435189947c0c93</originalsourceid><addsrcrecordid>eNo1UN1KwzAYjYigzj6AeJMXaM3XpE3j3Zw6BwMFez_Sr19dpE1Lmwl7eyvOm_MD55yLw9gtiARAmPvHcvmRpALSJJdaZVl6xq5B5VqCLCScs8jo4t8ruGTRNH0JIeZuDpBdsWptXYg3T7z3POyJd_03PfB3i8Sdr2mgGXzg-0NnPXe_2jUObXBz_jA5_8mR2pYP-94TtzgbGvuOAo28PnrbOZxu2EVj24miEy9Y-fJcrl7j7dt6s1puY2dEiK1BBImpEZXFWqeoc6FUoRoibAqFGVSq1lBrIrKkC1uRkhkUxiiNAo1csLu_WTcndsPoOjsed6dX5A-1qlc-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Juefei-Xu, F. ; Bhagavatula, C. ; Jaech, A. ; Prasad, U. ; Savvides, M.</creator><creatorcontrib>Juefei-Xu, F. ; Bhagavatula, C. ; Jaech, A. ; Prasad, U. ; Savvides, M.</creatorcontrib><description>In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.</description><identifier>ISBN: 9781467313841</identifier><identifier>ISBN: 146731384X</identifier><identifier>EISBN: 1467313831</identifier><identifier>EISBN: 9781467313834</identifier><identifier>EISBN: 1467313858</identifier><identifier>EISBN: 9781467313858</identifier><identifier>DOI: 10.1109/BTAS.2012.6374552</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Accelerometers ; Biometrics (access control) ; Covariance matrix ; Legged locomotion ; Sensors ; Smart phones</subject><ispartof>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2012, p.8-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6374552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6374552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Juefei-Xu, F.</creatorcontrib><creatorcontrib>Bhagavatula, C.</creatorcontrib><creatorcontrib>Jaech, A.</creatorcontrib><creatorcontrib>Prasad, U.</creatorcontrib><creatorcontrib>Savvides, M.</creatorcontrib><title>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</title><title>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</title><addtitle>BTAS</addtitle><description>In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Biometrics (access control)</subject><subject>Covariance matrix</subject><subject>Legged locomotion</subject><subject>Sensors</subject><subject>Smart phones</subject><isbn>9781467313841</isbn><isbn>146731384X</isbn><isbn>1467313831</isbn><isbn>9781467313834</isbn><isbn>1467313858</isbn><isbn>9781467313858</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UN1KwzAYjYigzj6AeJMXaM3XpE3j3Zw6BwMFez_Sr19dpE1Lmwl7eyvOm_MD55yLw9gtiARAmPvHcvmRpALSJJdaZVl6xq5B5VqCLCScs8jo4t8ruGTRNH0JIeZuDpBdsWptXYg3T7z3POyJd_03PfB3i8Sdr2mgGXzg-0NnPXe_2jUObXBz_jA5_8mR2pYP-94TtzgbGvuOAo28PnrbOZxu2EVj24miEy9Y-fJcrl7j7dt6s1puY2dEiK1BBImpEZXFWqeoc6FUoRoibAqFGVSq1lBrIrKkC1uRkhkUxiiNAo1csLu_WTcndsPoOjsed6dX5A-1qlc-</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Juefei-Xu, F.</creator><creator>Bhagavatula, C.</creator><creator>Jaech, A.</creator><creator>Prasad, U.</creator><creator>Savvides, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</title><author>Juefei-Xu, F. ; Bhagavatula, C. ; Jaech, A. ; Prasad, U. ; Savvides, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a9cc13c290bacd72c7604484feecf84c51b4d71d7eeeae78abe435189947c0c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Biometrics (access control)</topic><topic>Covariance matrix</topic><topic>Legged locomotion</topic><topic>Sensors</topic><topic>Smart phones</topic><toplevel>online_resources</toplevel><creatorcontrib>Juefei-Xu, F.</creatorcontrib><creatorcontrib>Bhagavatula, C.</creatorcontrib><creatorcontrib>Jaech, A.</creatorcontrib><creatorcontrib>Prasad, U.</creatorcontrib><creatorcontrib>Savvides, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Juefei-Xu, F.</au><au>Bhagavatula, C.</au><au>Jaech, A.</au><au>Prasad, U.</au><au>Savvides, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</atitle><btitle>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</btitle><stitle>BTAS</stitle><date>2012-09</date><risdate>2012</risdate><spage>8</spage><epage>15</epage><pages>8-15</pages><isbn>9781467313841</isbn><isbn>146731384X</isbn><eisbn>1467313831</eisbn><eisbn>9781467313834</eisbn><eisbn>1467313858</eisbn><eisbn>9781467313858</eisbn><abstract>In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/BTAS.2012.6374552</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467313841
ispartof 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2012, p.8-15
issn
language eng
recordid cdi_ieee_primary_6374552
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Accelerometers
Biometrics (access control)
Covariance matrix
Legged locomotion
Sensors
Smart phones
title Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gait-ID%20on%20the%20move:%20Pace%20independent%20human%20identification%20using%20cell%20phone%20accelerometer%20dynamics&rft.btitle=2012%20IEEE%20Fifth%20International%20Conference%20on%20Biometrics:%20Theory,%20Applications%20and%20Systems%20(BTAS)&rft.au=Juefei-Xu,%20F.&rft.date=2012-09&rft.spage=8&rft.epage=15&rft.pages=8-15&rft.isbn=9781467313841&rft.isbn_list=146731384X&rft_id=info:doi/10.1109/BTAS.2012.6374552&rft_dat=%3Cieee_6IE%3E6374552%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467313831&rft.eisbn_list=9781467313834&rft.eisbn_list=1467313858&rft.eisbn_list=9781467313858&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6374552&rfr_iscdi=true