Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics
In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fas...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 8 |
container_title | |
container_volume | |
creator | Juefei-Xu, F. Bhagavatula, C. Jaech, A. Prasad, U. Savvides, M. |
description | In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy. |
doi_str_mv | 10.1109/BTAS.2012.6374552 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6374552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6374552</ieee_id><sourcerecordid>6374552</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a9cc13c290bacd72c7604484feecf84c51b4d71d7eeeae78abe435189947c0c93</originalsourceid><addsrcrecordid>eNo1UN1KwzAYjYigzj6AeJMXaM3XpE3j3Zw6BwMFez_Sr19dpE1Lmwl7eyvOm_MD55yLw9gtiARAmPvHcvmRpALSJJdaZVl6xq5B5VqCLCScs8jo4t8ruGTRNH0JIeZuDpBdsWptXYg3T7z3POyJd_03PfB3i8Sdr2mgGXzg-0NnPXe_2jUObXBz_jA5_8mR2pYP-94TtzgbGvuOAo28PnrbOZxu2EVj24miEy9Y-fJcrl7j7dt6s1puY2dEiK1BBImpEZXFWqeoc6FUoRoibAqFGVSq1lBrIrKkC1uRkhkUxiiNAo1csLu_WTcndsPoOjsed6dX5A-1qlc-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Juefei-Xu, F. ; Bhagavatula, C. ; Jaech, A. ; Prasad, U. ; Savvides, M.</creator><creatorcontrib>Juefei-Xu, F. ; Bhagavatula, C. ; Jaech, A. ; Prasad, U. ; Savvides, M.</creatorcontrib><description>In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.</description><identifier>ISBN: 9781467313841</identifier><identifier>ISBN: 146731384X</identifier><identifier>EISBN: 1467313831</identifier><identifier>EISBN: 9781467313834</identifier><identifier>EISBN: 1467313858</identifier><identifier>EISBN: 9781467313858</identifier><identifier>DOI: 10.1109/BTAS.2012.6374552</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Accelerometers ; Biometrics (access control) ; Covariance matrix ; Legged locomotion ; Sensors ; Smart phones</subject><ispartof>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2012, p.8-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6374552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6374552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Juefei-Xu, F.</creatorcontrib><creatorcontrib>Bhagavatula, C.</creatorcontrib><creatorcontrib>Jaech, A.</creatorcontrib><creatorcontrib>Prasad, U.</creatorcontrib><creatorcontrib>Savvides, M.</creatorcontrib><title>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</title><title>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</title><addtitle>BTAS</addtitle><description>In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Biometrics (access control)</subject><subject>Covariance matrix</subject><subject>Legged locomotion</subject><subject>Sensors</subject><subject>Smart phones</subject><isbn>9781467313841</isbn><isbn>146731384X</isbn><isbn>1467313831</isbn><isbn>9781467313834</isbn><isbn>1467313858</isbn><isbn>9781467313858</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UN1KwzAYjYigzj6AeJMXaM3XpE3j3Zw6BwMFez_Sr19dpE1Lmwl7eyvOm_MD55yLw9gtiARAmPvHcvmRpALSJJdaZVl6xq5B5VqCLCScs8jo4t8ruGTRNH0JIeZuDpBdsWptXYg3T7z3POyJd_03PfB3i8Sdr2mgGXzg-0NnPXe_2jUObXBz_jA5_8mR2pYP-94TtzgbGvuOAo28PnrbOZxu2EVj24miEy9Y-fJcrl7j7dt6s1puY2dEiK1BBImpEZXFWqeoc6FUoRoibAqFGVSq1lBrIrKkC1uRkhkUxiiNAo1csLu_WTcndsPoOjsed6dX5A-1qlc-</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Juefei-Xu, F.</creator><creator>Bhagavatula, C.</creator><creator>Jaech, A.</creator><creator>Prasad, U.</creator><creator>Savvides, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</title><author>Juefei-Xu, F. ; Bhagavatula, C. ; Jaech, A. ; Prasad, U. ; Savvides, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a9cc13c290bacd72c7604484feecf84c51b4d71d7eeeae78abe435189947c0c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Biometrics (access control)</topic><topic>Covariance matrix</topic><topic>Legged locomotion</topic><topic>Sensors</topic><topic>Smart phones</topic><toplevel>online_resources</toplevel><creatorcontrib>Juefei-Xu, F.</creatorcontrib><creatorcontrib>Bhagavatula, C.</creatorcontrib><creatorcontrib>Jaech, A.</creatorcontrib><creatorcontrib>Prasad, U.</creatorcontrib><creatorcontrib>Savvides, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Juefei-Xu, F.</au><au>Bhagavatula, C.</au><au>Jaech, A.</au><au>Prasad, U.</au><au>Savvides, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics</atitle><btitle>2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)</btitle><stitle>BTAS</stitle><date>2012-09</date><risdate>2012</risdate><spage>8</spage><epage>15</epage><pages>8-15</pages><isbn>9781467313841</isbn><isbn>146731384X</isbn><eisbn>1467313831</eisbn><eisbn>9781467313834</eisbn><eisbn>1467313858</eisbn><eisbn>9781467313858</eisbn><abstract>In this paper, we have proposed a robust, acceleration based, pace independent gait recognition framework using Android smartphones. From our extensive experiments using cyclostationarity and continuous wavelet transform spectrogram analysis on our gait acceleration database with both normal and fast paced data, our proposed algorithm has outperformed the state-of-the-art by a great margin. To be more specific, for normal to normal pace matching, we are able to achieve 99.4% verification rate (VR) at 0.1% false accept rate (FAR); for fast vs. fast, we are able to achieve 96.8% VR at 0.1% FAR; for the challenging normal vs. fast, we are still able to achieve 61.1% VR at 0.1% FAR. The findings have laid the foundation of pace independent gait recognition using mobile devices with high accuracy.</abstract><pub>IEEE</pub><doi>10.1109/BTAS.2012.6374552</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467313841 |
ispartof | 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2012, p.8-15 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6374552 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Accelerometers Biometrics (access control) Covariance matrix Legged locomotion Sensors Smart phones |
title | Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gait-ID%20on%20the%20move:%20Pace%20independent%20human%20identification%20using%20cell%20phone%20accelerometer%20dynamics&rft.btitle=2012%20IEEE%20Fifth%20International%20Conference%20on%20Biometrics:%20Theory,%20Applications%20and%20Systems%20(BTAS)&rft.au=Juefei-Xu,%20F.&rft.date=2012-09&rft.spage=8&rft.epage=15&rft.pages=8-15&rft.isbn=9781467313841&rft.isbn_list=146731384X&rft_id=info:doi/10.1109/BTAS.2012.6374552&rft_dat=%3Cieee_6IE%3E6374552%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467313831&rft.eisbn_list=9781467313834&rft.eisbn_list=1467313858&rft.eisbn_list=9781467313858&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6374552&rfr_iscdi=true |