Dynamic hand gesture recognition from Bag-of-Features and local part model

This paper discusses the use of Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abid, M. R., Feng Shi, Petriu, E. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 78
container_title
container_volume
creator Abid, M. R.
Feng Shi
Petriu, E. M.
description This paper discusses the use of Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor to represent features. K-means++ method has applied to cluster the visual words. Dynamic hand gesture classification was completed by using a Bag-of-features (BOF) and non-linear support vector machine (SVM) method. A BOF do not track the order of events. To counter the unordered events of BOF approach, we used a multiscale local part model to preserve temporal context. Initial experimental results on newly collected complex dataset show a higher level of recognition.
doi_str_mv 10.1109/HAVE.2012.6374443
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6374443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6374443</ieee_id><sourcerecordid>6374443</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-98053153faa3881d655add712408a83610ab625e87c3bcdf1c3f0d0c21b4dfd03</originalsourceid><addsrcrecordid>eNpVUMlKA0EUbBFBifMB4qV_YOLrvecYY2KUgJfgNbzpZWyZJfSMh_y9CebiqShqoShCHhjMGYPqabP4XM05MD7XwkgpxRUpKmOZ1EYwpY29_setuiXFOH4DwCmuuZR35P3l2GOXHP3C3tMmjNNPDjQHNzR9mtLQ05iHjj5jUw6xXAc86yM9m9vBYUsPmCfaDT609-QmYjuG4oIzsluvdstNuf14fVsutmWqYCorC-o0RkREYS3zWin03jAuwaIVmgHWmqtgjRO185E5EcGD46yWPnoQM_L4V5tCCPtDTh3m4_5ygPgFUL5N_Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic hand gesture recognition from Bag-of-Features and local part model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Abid, M. R. ; Feng Shi ; Petriu, E. M.</creator><creatorcontrib>Abid, M. R. ; Feng Shi ; Petriu, E. M.</creatorcontrib><description>This paper discusses the use of Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor to represent features. K-means++ method has applied to cluster the visual words. Dynamic hand gesture classification was completed by using a Bag-of-features (BOF) and non-linear support vector machine (SVM) method. A BOF do not track the order of events. To counter the unordered events of BOF approach, we used a multiscale local part model to preserve temporal context. Initial experimental results on newly collected complex dataset show a higher level of recognition.</description><identifier>ISBN: 9781467315685</identifier><identifier>ISBN: 1467315680</identifier><identifier>EISBN: 9781467315678</identifier><identifier>EISBN: 1467315672</identifier><identifier>EISBN: 9781467315661</identifier><identifier>EISBN: 1467315664</identifier><identifier>DOI: 10.1109/HAVE.2012.6374443</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D HOG descriptor ; bag-of-feature (BOF) ; Computational modeling ; dynamic hand gesture ; Feature extraction ; Gesture recognition ; Hidden Markov models ; Histograms ; local part model ; Support vector machines ; Visualization</subject><ispartof>2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2012) Proceedings, 2012, p.78-82</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6374443$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6374443$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abid, M. R.</creatorcontrib><creatorcontrib>Feng Shi</creatorcontrib><creatorcontrib>Petriu, E. M.</creatorcontrib><title>Dynamic hand gesture recognition from Bag-of-Features and local part model</title><title>2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2012) Proceedings</title><addtitle>HAVE</addtitle><description>This paper discusses the use of Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor to represent features. K-means++ method has applied to cluster the visual words. Dynamic hand gesture classification was completed by using a Bag-of-features (BOF) and non-linear support vector machine (SVM) method. A BOF do not track the order of events. To counter the unordered events of BOF approach, we used a multiscale local part model to preserve temporal context. Initial experimental results on newly collected complex dataset show a higher level of recognition.</description><subject>3D HOG descriptor</subject><subject>bag-of-feature (BOF)</subject><subject>Computational modeling</subject><subject>dynamic hand gesture</subject><subject>Feature extraction</subject><subject>Gesture recognition</subject><subject>Hidden Markov models</subject><subject>Histograms</subject><subject>local part model</subject><subject>Support vector machines</subject><subject>Visualization</subject><isbn>9781467315685</isbn><isbn>1467315680</isbn><isbn>9781467315678</isbn><isbn>1467315672</isbn><isbn>9781467315661</isbn><isbn>1467315664</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlKA0EUbBFBifMB4qV_YOLrvecYY2KUgJfgNbzpZWyZJfSMh_y9CebiqShqoShCHhjMGYPqabP4XM05MD7XwkgpxRUpKmOZ1EYwpY29_setuiXFOH4DwCmuuZR35P3l2GOXHP3C3tMmjNNPDjQHNzR9mtLQ05iHjj5jUw6xXAc86yM9m9vBYUsPmCfaDT609-QmYjuG4oIzsluvdstNuf14fVsutmWqYCorC-o0RkREYS3zWin03jAuwaIVmgHWmqtgjRO185E5EcGD46yWPnoQM_L4V5tCCPtDTh3m4_5ygPgFUL5N_Q</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Abid, M. R.</creator><creator>Feng Shi</creator><creator>Petriu, E. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Dynamic hand gesture recognition from Bag-of-Features and local part model</title><author>Abid, M. R. ; Feng Shi ; Petriu, E. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-98053153faa3881d655add712408a83610ab625e87c3bcdf1c3f0d0c21b4dfd03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>3D HOG descriptor</topic><topic>bag-of-feature (BOF)</topic><topic>Computational modeling</topic><topic>dynamic hand gesture</topic><topic>Feature extraction</topic><topic>Gesture recognition</topic><topic>Hidden Markov models</topic><topic>Histograms</topic><topic>local part model</topic><topic>Support vector machines</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Abid, M. R.</creatorcontrib><creatorcontrib>Feng Shi</creatorcontrib><creatorcontrib>Petriu, E. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abid, M. R.</au><au>Feng Shi</au><au>Petriu, E. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic hand gesture recognition from Bag-of-Features and local part model</atitle><btitle>2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2012) Proceedings</btitle><stitle>HAVE</stitle><date>2012-10</date><risdate>2012</risdate><spage>78</spage><epage>82</epage><pages>78-82</pages><isbn>9781467315685</isbn><isbn>1467315680</isbn><eisbn>9781467315678</eisbn><eisbn>1467315672</eisbn><eisbn>9781467315661</eisbn><eisbn>1467315664</eisbn><abstract>This paper discusses the use of Bag-of-Features and a local part model approach for bare hand dynamic hand gesture recognition from video. We used dense sampling to extract local 3D multiscale whole-part features. We adopted three dimensional histograms of a gradient orientation (3D HOG) descriptor to represent features. K-means++ method has applied to cluster the visual words. Dynamic hand gesture classification was completed by using a Bag-of-features (BOF) and non-linear support vector machine (SVM) method. A BOF do not track the order of events. To counter the unordered events of BOF approach, we used a multiscale local part model to preserve temporal context. Initial experimental results on newly collected complex dataset show a higher level of recognition.</abstract><pub>IEEE</pub><doi>10.1109/HAVE.2012.6374443</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467315685
ispartof 2012 IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE 2012) Proceedings, 2012, p.78-82
issn
language eng
recordid cdi_ieee_primary_6374443
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 3D HOG descriptor
bag-of-feature (BOF)
Computational modeling
dynamic hand gesture
Feature extraction
Gesture recognition
Hidden Markov models
Histograms
local part model
Support vector machines
Visualization
title Dynamic hand gesture recognition from Bag-of-Features and local part model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20hand%20gesture%20recognition%20from%20Bag-of-Features%20and%20local%20part%20model&rft.btitle=2012%20IEEE%20International%20Workshop%20on%20Haptic%20Audio%20Visual%20Environments%20and%20Games%20(HAVE%202012)%20Proceedings&rft.au=Abid,%20M.%20R.&rft.date=2012-10&rft.spage=78&rft.epage=82&rft.pages=78-82&rft.isbn=9781467315685&rft.isbn_list=1467315680&rft_id=info:doi/10.1109/HAVE.2012.6374443&rft_dat=%3Cieee_6IE%3E6374443%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467315678&rft.eisbn_list=1467315672&rft.eisbn_list=9781467315661&rft.eisbn_list=1467315664&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6374443&rfr_iscdi=true