VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers

This paper proposes a novel algebraic integer (AI) based multi-encoding of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures employing parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2013-06, Vol.60 (6), p.1455-1468
Hauptverfasser: Madishetty, S. K., Madanayake, A., Cintra, R. J., Dimitrov, V. S., Mugler, D. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1468
container_issue 6
container_start_page 1455
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 60
creator Madishetty, S. K.
Madanayake, A.
Cintra, R. J.
Dimitrov, V. S.
Mugler, D. H.
description This paper proposes a novel algebraic integer (AI) based multi-encoding of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures employing parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a multiplication-free and computationally accurate architecture. It also guarantees a noise-free computation throughput the multi-level multi-rate 2-D filtering operation. A single final reconstruction step (FRS) furnishes filtered and down-sampled image outputs in fixed-point, resulting in low levels of quantization noise. Comparisons are provided between Daubechies-4 and -6 designs in terms of SNR, PSNR, hardware structure, and power consumptions, for different word lengths. SNR and PSNR improvements of approximately 30% were observed in favour of AI-based systems, when compared to 8-bit fixed-point schemes (six fractional bits). Further, FRS designs based on canonical signed digit representation and on expansion factors are proposed. The Daubechies-4 and -6 4-level VLSI architectures are prototyped on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device at 282 MHz and 146 MHz, respectively, with dynamic power consumption of 164 mW and 339 mW, respectively, and verified on FPGA chip using an ML605 platform.
doi_str_mv 10.1109/TCSI.2012.2221171
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6374275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6374275</ieee_id><sourcerecordid>10_1109_TCSI_2012_2221171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-2dd6db1811175cb051163a2f384a03551aeb61855b6ce7d9db80bbb3ee5b1e4d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNfyDFY8eOs6xaHpEqsWgLy8iPSRsU2sp2kfh7ElqxmivNuaPRIeQe2ASAlY-r2bKacAZ8wjkHKOCCjEBKnTHN1OWQ8zLTgutrchPjJ2O8ZAJGxL4vlhWdBrdtE7p0DBhpsw80bZHm2cocqNl5qv4Sz-Z0bo4We7jHPsw3dpjoc9slDJGuY7vb0Gm3QRtM62i1S7jpF7fkqjFdxLvzHJP189Nq9pot3l6q2XSROcF0yrj3ylvQ0H8vnWUSQAnDG6Fzw4SUYNAq0FJa5bDwpbeaWWsForSAuRdjAqe7LuxjDNjUh9B-mfBTA6sHSfUgqR4k1WdJfefh1GkR8Z9Xosh5IcUvup1iFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers</title><source>IEEE Electronic Library (IEL)</source><creator>Madishetty, S. K. ; Madanayake, A. ; Cintra, R. J. ; Dimitrov, V. S. ; Mugler, D. H.</creator><creatorcontrib>Madishetty, S. K. ; Madanayake, A. ; Cintra, R. J. ; Dimitrov, V. S. ; Mugler, D. H.</creatorcontrib><description>This paper proposes a novel algebraic integer (AI) based multi-encoding of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures employing parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a multiplication-free and computationally accurate architecture. It also guarantees a noise-free computation throughput the multi-level multi-rate 2-D filtering operation. A single final reconstruction step (FRS) furnishes filtered and down-sampled image outputs in fixed-point, resulting in low levels of quantization noise. Comparisons are provided between Daubechies-4 and -6 designs in terms of SNR, PSNR, hardware structure, and power consumptions, for different word lengths. SNR and PSNR improvements of approximately 30% were observed in favour of AI-based systems, when compared to 8-bit fixed-point schemes (six fractional bits). Further, FRS designs based on canonical signed digit representation and on expansion factors are proposed. The Daubechies-4 and -6 4-level VLSI architectures are prototyped on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device at 282 MHz and 146 MHz, respectively, with dynamic power consumption of 164 mW and 339 mW, respectively, and verified on FPGA chip using an ML605 platform.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2012.2221171</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebraic integer encoding ; Approximation methods ; Artificial intelligence ; Computer architecture ; Daubechies wavelets ; Discrete wavelet transforms ; Encoding ; error-free algorithm ; fixed-point scheme ; Image coding ; Image reconstruction ; sub-band coding ; VLSI</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2013-06, Vol.60 (6), p.1455-1468</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-2dd6db1811175cb051163a2f384a03551aeb61855b6ce7d9db80bbb3ee5b1e4d3</citedby><cites>FETCH-LOGICAL-c308t-2dd6db1811175cb051163a2f384a03551aeb61855b6ce7d9db80bbb3ee5b1e4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6374275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6374275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Madishetty, S. K.</creatorcontrib><creatorcontrib>Madanayake, A.</creatorcontrib><creatorcontrib>Cintra, R. J.</creatorcontrib><creatorcontrib>Dimitrov, V. S.</creatorcontrib><creatorcontrib>Mugler, D. H.</creatorcontrib><title>VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper proposes a novel algebraic integer (AI) based multi-encoding of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures employing parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a multiplication-free and computationally accurate architecture. It also guarantees a noise-free computation throughput the multi-level multi-rate 2-D filtering operation. A single final reconstruction step (FRS) furnishes filtered and down-sampled image outputs in fixed-point, resulting in low levels of quantization noise. Comparisons are provided between Daubechies-4 and -6 designs in terms of SNR, PSNR, hardware structure, and power consumptions, for different word lengths. SNR and PSNR improvements of approximately 30% were observed in favour of AI-based systems, when compared to 8-bit fixed-point schemes (six fractional bits). Further, FRS designs based on canonical signed digit representation and on expansion factors are proposed. The Daubechies-4 and -6 4-level VLSI architectures are prototyped on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device at 282 MHz and 146 MHz, respectively, with dynamic power consumption of 164 mW and 339 mW, respectively, and verified on FPGA chip using an ML605 platform.</description><subject>Algebraic integer encoding</subject><subject>Approximation methods</subject><subject>Artificial intelligence</subject><subject>Computer architecture</subject><subject>Daubechies wavelets</subject><subject>Discrete wavelet transforms</subject><subject>Encoding</subject><subject>error-free algorithm</subject><subject>fixed-point scheme</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>sub-band coding</subject><subject>VLSI</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNfyDFY8eOs6xaHpEqsWgLy8iPSRsU2sp2kfh7ElqxmivNuaPRIeQe2ASAlY-r2bKacAZ8wjkHKOCCjEBKnTHN1OWQ8zLTgutrchPjJ2O8ZAJGxL4vlhWdBrdtE7p0DBhpsw80bZHm2cocqNl5qv4Sz-Z0bo4We7jHPsw3dpjoc9slDJGuY7vb0Gm3QRtM62i1S7jpF7fkqjFdxLvzHJP189Nq9pot3l6q2XSROcF0yrj3ylvQ0H8vnWUSQAnDG6Fzw4SUYNAq0FJa5bDwpbeaWWsForSAuRdjAqe7LuxjDNjUh9B-mfBTA6sHSfUgqR4k1WdJfefh1GkR8Z9Xosh5IcUvup1iFw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Madishetty, S. K.</creator><creator>Madanayake, A.</creator><creator>Cintra, R. J.</creator><creator>Dimitrov, V. S.</creator><creator>Mugler, D. H.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130601</creationdate><title>VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers</title><author>Madishetty, S. K. ; Madanayake, A. ; Cintra, R. J. ; Dimitrov, V. S. ; Mugler, D. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-2dd6db1811175cb051163a2f384a03551aeb61855b6ce7d9db80bbb3ee5b1e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebraic integer encoding</topic><topic>Approximation methods</topic><topic>Artificial intelligence</topic><topic>Computer architecture</topic><topic>Daubechies wavelets</topic><topic>Discrete wavelet transforms</topic><topic>Encoding</topic><topic>error-free algorithm</topic><topic>fixed-point scheme</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>sub-band coding</topic><topic>VLSI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madishetty, S. K.</creatorcontrib><creatorcontrib>Madanayake, A.</creatorcontrib><creatorcontrib>Cintra, R. J.</creatorcontrib><creatorcontrib>Dimitrov, V. S.</creatorcontrib><creatorcontrib>Mugler, D. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madishetty, S. K.</au><au>Madanayake, A.</au><au>Cintra, R. J.</au><au>Dimitrov, V. S.</au><au>Mugler, D. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>60</volume><issue>6</issue><spage>1455</spage><epage>1468</epage><pages>1455-1468</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper proposes a novel algebraic integer (AI) based multi-encoding of Daubechies-4 and -6 2-D wavelet filters having error-free integer-based computation. Digital VLSI architectures employing parallel channels are proposed, physically realized and tested. The multi-encoded AI framework allows a multiplication-free and computationally accurate architecture. It also guarantees a noise-free computation throughput the multi-level multi-rate 2-D filtering operation. A single final reconstruction step (FRS) furnishes filtered and down-sampled image outputs in fixed-point, resulting in low levels of quantization noise. Comparisons are provided between Daubechies-4 and -6 designs in terms of SNR, PSNR, hardware structure, and power consumptions, for different word lengths. SNR and PSNR improvements of approximately 30% were observed in favour of AI-based systems, when compared to 8-bit fixed-point schemes (six fractional bits). Further, FRS designs based on canonical signed digit representation and on expansion factors are proposed. The Daubechies-4 and -6 4-level VLSI architectures are prototyped on a Xilinx Virtex-6 vcx240t-1ff1156 FPGA device at 282 MHz and 146 MHz, respectively, with dynamic power consumption of 164 mW and 339 mW, respectively, and verified on FPGA chip using an ML605 platform.</abstract><pub>IEEE</pub><doi>10.1109/TCSI.2012.2221171</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2013-06, Vol.60 (6), p.1455-1468
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_6374275
source IEEE Electronic Library (IEL)
subjects Algebraic integer encoding
Approximation methods
Artificial intelligence
Computer architecture
Daubechies wavelets
Discrete wavelet transforms
Encoding
error-free algorithm
fixed-point scheme
Image coding
Image reconstruction
sub-band coding
VLSI
title VLSI Architectures for the 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VLSI%20Architectures%20for%20the%204-Tap%20and%206-Tap%202-D%20Daubechies%20Wavelet%20Filters%20Using%20Algebraic%20Integers&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Madishetty,%20S.%20K.&rft.date=2013-06-01&rft.volume=60&rft.issue=6&rft.spage=1455&rft.epage=1468&rft.pages=1455-1468&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2012.2221171&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSI_2012_2221171%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6374275&rfr_iscdi=true