Exploring optimization strategies in board game Abalone for Alpha-Beta search

This paper discusses the design and implementation of a highly efficient MiniMax algorithm for the game Abalone. For perfect information games with relatively low branching factor for their decision tree (such as Chess, Checkers etc.) and a highly accurate evaluation function, Alpha-Beta search prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Papadopoulos, A., Toumpas, K., Chrysopoulos, A., Mitkas, P. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses the design and implementation of a highly efficient MiniMax algorithm for the game Abalone. For perfect information games with relatively low branching factor for their decision tree (such as Chess, Checkers etc.) and a highly accurate evaluation function, Alpha-Beta search proved to be far more efficient than Monte Carlo Tree Search. In recent years many new techniques have been developed to improve the efficiency of the Alpha-Beta tree, applied to a variety of scientific fields. This paper explores several techniques for increasing the efficiency of Alpha-Beta Search on the board game of Abalone while introducing some new innovative techniques that proved to be very effective. The main idea behind them is the incorporation of probabilistic features to the otherwise deterministic Alpha-Beta search.
ISSN:2325-4270
DOI:10.1109/CIG.2012.6374139