Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies
Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent m...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32 |
---|---|
container_issue | |
container_start_page | 25 |
container_title | |
container_volume | |
creator | Wittkamp, M. Barone, L. Hingston, P. While, L. |
description | Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise. |
doi_str_mv | 10.1109/CIG.2012.6374134 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6374134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6374134</ieee_id><sourcerecordid>6374134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1324-bdfdda8d553b76d8b558b07842af1709004d6102398991fc6deb986a5719f3f3</originalsourceid><addsrcrecordid>eNpVUM1LwzAcjajgmL0LXvIPdOaXpPk4StFtMPSym4eRNr-MSNeUtA7231twF0_vA97j8Qh5ArYCYPal3q5XnAFfKaElCHlDCqsNSKUFgJXq9p8W9o4suOBVKblmD6QYx2_GmABjjDIL8vWR4oh0Sh1m17dIQ8o0o-vKKZ6Q4jl1P1NMvcsX2qHLfeyPNAXapjTMiSmekQ4ZvZtSLmdyoeM023iMOD6S--C6EYsrLsn-_W1fb8rd53pbv-7KCILLsvHBe2d8VYlGK2-aqjIN00ZyF0Azy5j0ChgX1lgLoVUeG2uUqzTYIIJYkue_2oiIhyHH0zz2cH1H_AKONVb5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wittkamp, M. ; Barone, L. ; Hingston, P. ; While, L.</creator><creatorcontrib>Wittkamp, M. ; Barone, L. ; Hingston, P. ; While, L.</creatorcontrib><description>Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.</description><identifier>ISSN: 2325-4270</identifier><identifier>ISBN: 9781467311939</identifier><identifier>ISBN: 1467311936</identifier><identifier>EISBN: 9781467311946</identifier><identifier>EISBN: 1467311928</identifier><identifier>EISBN: 1467311944</identifier><identifier>EISBN: 9781467311922</identifier><identifier>DOI: 10.1109/CIG.2012.6374134</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Computational modeling ; Games ; Learning systems ; Noise ; Real-time systems ; Training</subject><ispartof>2012 IEEE Conference on Computational Intelligence and Games (CIG), 2012, p.25-32</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6374134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6374134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wittkamp, M.</creatorcontrib><creatorcontrib>Barone, L.</creatorcontrib><creatorcontrib>Hingston, P.</creatorcontrib><creatorcontrib>While, L.</creatorcontrib><title>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</title><title>2012 IEEE Conference on Computational Intelligence and Games (CIG)</title><addtitle>CIG</addtitle><description>Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.</description><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Games</subject><subject>Learning systems</subject><subject>Noise</subject><subject>Real-time systems</subject><subject>Training</subject><issn>2325-4270</issn><isbn>9781467311939</isbn><isbn>1467311936</isbn><isbn>9781467311946</isbn><isbn>1467311928</isbn><isbn>1467311944</isbn><isbn>9781467311922</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1LwzAcjajgmL0LXvIPdOaXpPk4StFtMPSym4eRNr-MSNeUtA7231twF0_vA97j8Qh5ArYCYPal3q5XnAFfKaElCHlDCqsNSKUFgJXq9p8W9o4suOBVKblmD6QYx2_GmABjjDIL8vWR4oh0Sh1m17dIQ8o0o-vKKZ6Q4jl1P1NMvcsX2qHLfeyPNAXapjTMiSmekQ4ZvZtSLmdyoeM023iMOD6S--C6EYsrLsn-_W1fb8rd53pbv-7KCILLsvHBe2d8VYlGK2-aqjIN00ZyF0Azy5j0ChgX1lgLoVUeG2uUqzTYIIJYkue_2oiIhyHH0zz2cH1H_AKONVb5</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Wittkamp, M.</creator><creator>Barone, L.</creator><creator>Hingston, P.</creator><creator>While, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</title><author>Wittkamp, M. ; Barone, L. ; Hingston, P. ; While, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1324-bdfdda8d553b76d8b558b07842af1709004d6102398991fc6deb986a5719f3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Games</topic><topic>Learning systems</topic><topic>Noise</topic><topic>Real-time systems</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wittkamp, M.</creatorcontrib><creatorcontrib>Barone, L.</creatorcontrib><creatorcontrib>Hingston, P.</creatorcontrib><creatorcontrib>While, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wittkamp, M.</au><au>Barone, L.</au><au>Hingston, P.</au><au>While, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</atitle><btitle>2012 IEEE Conference on Computational Intelligence and Games (CIG)</btitle><stitle>CIG</stitle><date>2012-09</date><risdate>2012</risdate><spage>25</spage><epage>32</epage><pages>25-32</pages><issn>2325-4270</issn><isbn>9781467311939</isbn><isbn>1467311936</isbn><eisbn>9781467311946</eisbn><eisbn>1467311928</eisbn><eisbn>1467311944</eisbn><eisbn>9781467311922</eisbn><abstract>Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.</abstract><pub>IEEE</pub><doi>10.1109/CIG.2012.6374134</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-4270 |
ispartof | 2012 IEEE Conference on Computational Intelligence and Games (CIG), 2012, p.25-32 |
issn | 2325-4270 |
language | eng |
recordid | cdi_ieee_primary_6374134 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational intelligence Computational modeling Games Learning systems Noise Real-time systems Training |
title | Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Noise%20tolerance%20for%20real-time%20evolutionary%20learning%20of%20cooperative%20predator-prey%20strategies&rft.btitle=2012%20IEEE%20Conference%20on%20Computational%20Intelligence%20and%20Games%20(CIG)&rft.au=Wittkamp,%20M.&rft.date=2012-09&rft.spage=25&rft.epage=32&rft.pages=25-32&rft.issn=2325-4270&rft.isbn=9781467311939&rft.isbn_list=1467311936&rft_id=info:doi/10.1109/CIG.2012.6374134&rft_dat=%3Cieee_6IE%3E6374134%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311946&rft.eisbn_list=1467311928&rft.eisbn_list=1467311944&rft.eisbn_list=9781467311922&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6374134&rfr_iscdi=true |