Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies

Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wittkamp, M., Barone, L., Hingston, P., While, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 25
container_title
container_volume
creator Wittkamp, M.
Barone, L.
Hingston, P.
While, L.
description Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.
doi_str_mv 10.1109/CIG.2012.6374134
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6374134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6374134</ieee_id><sourcerecordid>6374134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1324-bdfdda8d553b76d8b558b07842af1709004d6102398991fc6deb986a5719f3f3</originalsourceid><addsrcrecordid>eNpVUM1LwzAcjajgmL0LXvIPdOaXpPk4StFtMPSym4eRNr-MSNeUtA7231twF0_vA97j8Qh5ArYCYPal3q5XnAFfKaElCHlDCqsNSKUFgJXq9p8W9o4suOBVKblmD6QYx2_GmABjjDIL8vWR4oh0Sh1m17dIQ8o0o-vKKZ6Q4jl1P1NMvcsX2qHLfeyPNAXapjTMiSmekQ4ZvZtSLmdyoeM023iMOD6S--C6EYsrLsn-_W1fb8rd53pbv-7KCILLsvHBe2d8VYlGK2-aqjIN00ZyF0Azy5j0ChgX1lgLoVUeG2uUqzTYIIJYkue_2oiIhyHH0zz2cH1H_AKONVb5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wittkamp, M. ; Barone, L. ; Hingston, P. ; While, L.</creator><creatorcontrib>Wittkamp, M. ; Barone, L. ; Hingston, P. ; While, L.</creatorcontrib><description>Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.</description><identifier>ISSN: 2325-4270</identifier><identifier>ISBN: 9781467311939</identifier><identifier>ISBN: 1467311936</identifier><identifier>EISBN: 9781467311946</identifier><identifier>EISBN: 1467311928</identifier><identifier>EISBN: 1467311944</identifier><identifier>EISBN: 9781467311922</identifier><identifier>DOI: 10.1109/CIG.2012.6374134</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational intelligence ; Computational modeling ; Games ; Learning systems ; Noise ; Real-time systems ; Training</subject><ispartof>2012 IEEE Conference on Computational Intelligence and Games (CIG), 2012, p.25-32</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6374134$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6374134$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wittkamp, M.</creatorcontrib><creatorcontrib>Barone, L.</creatorcontrib><creatorcontrib>Hingston, P.</creatorcontrib><creatorcontrib>While, L.</creatorcontrib><title>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</title><title>2012 IEEE Conference on Computational Intelligence and Games (CIG)</title><addtitle>CIG</addtitle><description>Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.</description><subject>Computational intelligence</subject><subject>Computational modeling</subject><subject>Games</subject><subject>Learning systems</subject><subject>Noise</subject><subject>Real-time systems</subject><subject>Training</subject><issn>2325-4270</issn><isbn>9781467311939</isbn><isbn>1467311936</isbn><isbn>9781467311946</isbn><isbn>1467311928</isbn><isbn>1467311944</isbn><isbn>9781467311922</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUM1LwzAcjajgmL0LXvIPdOaXpPk4StFtMPSym4eRNr-MSNeUtA7231twF0_vA97j8Qh5ArYCYPal3q5XnAFfKaElCHlDCqsNSKUFgJXq9p8W9o4suOBVKblmD6QYx2_GmABjjDIL8vWR4oh0Sh1m17dIQ8o0o-vKKZ6Q4jl1P1NMvcsX2qHLfeyPNAXapjTMiSmekQ4ZvZtSLmdyoeM023iMOD6S--C6EYsrLsn-_W1fb8rd53pbv-7KCILLsvHBe2d8VYlGK2-aqjIN00ZyF0Azy5j0ChgX1lgLoVUeG2uUqzTYIIJYkue_2oiIhyHH0zz2cH1H_AKONVb5</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Wittkamp, M.</creator><creator>Barone, L.</creator><creator>Hingston, P.</creator><creator>While, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</title><author>Wittkamp, M. ; Barone, L. ; Hingston, P. ; While, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1324-bdfdda8d553b76d8b558b07842af1709004d6102398991fc6deb986a5719f3f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational intelligence</topic><topic>Computational modeling</topic><topic>Games</topic><topic>Learning systems</topic><topic>Noise</topic><topic>Real-time systems</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wittkamp, M.</creatorcontrib><creatorcontrib>Barone, L.</creatorcontrib><creatorcontrib>Hingston, P.</creatorcontrib><creatorcontrib>While, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wittkamp, M.</au><au>Barone, L.</au><au>Hingston, P.</au><au>While, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies</atitle><btitle>2012 IEEE Conference on Computational Intelligence and Games (CIG)</btitle><stitle>CIG</stitle><date>2012-09</date><risdate>2012</risdate><spage>25</spage><epage>32</epage><pages>25-32</pages><issn>2325-4270</issn><isbn>9781467311939</isbn><isbn>1467311936</isbn><eisbn>9781467311946</eisbn><eisbn>1467311928</eisbn><eisbn>1467311944</eisbn><eisbn>9781467311922</eisbn><abstract>Learning team-based strategies in real-time is a difficult task, much more so in the presence of noise. In our previous work in the Prey and Predators domain we introduced an algorithm capable of evolving cooperative team strategies in real-time using fitness evaluations against a perfect opponent model. This paper continues our work within the same domain, training a team of predators to capture a prey. We investigate the effect of varying degrees of opponent model noise in our learning system. In the presence of and in the effort to mitigate the effects of such noise we present modifications to our baseline system in the forms of Rescaled Mutation, Conservative Replacement and a combination of the two techniques. The results of the modifications are extremely promising. The combined approach in particular demonstrates a vast improvement and decreased variance in the performance of our team of predators in the presence of opponent model noise. Additionally, the noise-mitigating strategies employed do not adversely affect the performance of the real-time team learning system in the absence of noise.</abstract><pub>IEEE</pub><doi>10.1109/CIG.2012.6374134</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-4270
ispartof 2012 IEEE Conference on Computational Intelligence and Games (CIG), 2012, p.25-32
issn 2325-4270
language eng
recordid cdi_ieee_primary_6374134
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational intelligence
Computational modeling
Games
Learning systems
Noise
Real-time systems
Training
title Noise tolerance for real-time evolutionary learning of cooperative predator-prey strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Noise%20tolerance%20for%20real-time%20evolutionary%20learning%20of%20cooperative%20predator-prey%20strategies&rft.btitle=2012%20IEEE%20Conference%20on%20Computational%20Intelligence%20and%20Games%20(CIG)&rft.au=Wittkamp,%20M.&rft.date=2012-09&rft.spage=25&rft.epage=32&rft.pages=25-32&rft.issn=2325-4270&rft.isbn=9781467311939&rft.isbn_list=1467311936&rft_id=info:doi/10.1109/CIG.2012.6374134&rft_dat=%3Cieee_6IE%3E6374134%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311946&rft.eisbn_list=1467311928&rft.eisbn_list=1467311944&rft.eisbn_list=9781467311922&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6374134&rfr_iscdi=true