Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions
This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assum...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | |
container_start_page | 79 |
container_title | |
container_volume | |
creator | Yazdian, E. Bastani, M. H. Gazor, S. |
description | This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime. |
doi_str_mv | 10.1109/SiPS.2012.15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6363187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6363187</ieee_id><sourcerecordid>6363187</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f3bd66ead74d84cade56b47eb4ed28ee14dc022a55375d305931565390aadd673</originalsourceid><addsrcrecordid>eNo9j0trwkAURqcvqNruuutm_kDSed5JllbSB1haSAvdydW5yhSTyEwU_PcqLV19i3M48DF2J0UupSgf6vBR50pIlUt7xobCQWlNYUGfs4GSoDJtnbhgQ2nAaVUW8H35D0Bds2FKP0KAsQoGbFZ327ggXrXbhiL2oWt5aPkU44r4OEbcJ_6IiTw_greuobZPvFvyKqyo3eF6S-nk19hs1sTrHuPu6E661odTK92wqyWuE93-7Yh9PVWfk5ds-v78OhlPsyCd7bOlnnsAQu-ML8wCPVmYG0dzQ14VRNL4hVAKrdXOei1sqaUFq0uB6P3x54jd_3YDEc02MTQY9zPQoGXh9AEdGFd0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yazdian, E. ; Bastani, M. H. ; Gazor, S.</creator><creatorcontrib>Yazdian, E. ; Bastani, M. H. ; Gazor, S.</creatorcontrib><description>This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.</description><identifier>ISSN: 2162-3562</identifier><identifier>ISBN: 146732986X</identifier><identifier>ISBN: 9781467329866</identifier><identifier>EISSN: 2162-3570</identifier><identifier>EISBN: 0769548563</identifier><identifier>EISBN: 9781467329873</identifier><identifier>EISBN: 9780769548562</identifier><identifier>EISBN: 1467329878</identifier><identifier>DOI: 10.1109/SiPS.2012.15</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Covariance matrix ; Eigenvalues and eigenfunctions ; Minimum Description Length (MDL) ; Random Matrix Theory ; Signal to noise ratio ; Vectors</subject><ispartof>2012 IEEE Workshop on Signal Processing Systems, 2012, p.79-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6363187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6363187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yazdian, E.</creatorcontrib><creatorcontrib>Bastani, M. H.</creatorcontrib><creatorcontrib>Gazor, S.</creatorcontrib><title>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</title><title>2012 IEEE Workshop on Signal Processing Systems</title><addtitle>sips</addtitle><description>This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.</description><subject>Array signal processing</subject><subject>Covariance matrix</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Minimum Description Length (MDL)</subject><subject>Random Matrix Theory</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>2162-3562</issn><issn>2162-3570</issn><isbn>146732986X</isbn><isbn>9781467329866</isbn><isbn>0769548563</isbn><isbn>9781467329873</isbn><isbn>9780769548562</isbn><isbn>1467329878</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0trwkAURqcvqNruuutm_kDSed5JllbSB1haSAvdydW5yhSTyEwU_PcqLV19i3M48DF2J0UupSgf6vBR50pIlUt7xobCQWlNYUGfs4GSoDJtnbhgQ2nAaVUW8H35D0Bds2FKP0KAsQoGbFZ327ggXrXbhiL2oWt5aPkU44r4OEbcJ_6IiTw_greuobZPvFvyKqyo3eF6S-nk19hs1sTrHuPu6E661odTK92wqyWuE93-7Yh9PVWfk5ds-v78OhlPsyCd7bOlnnsAQu-ML8wCPVmYG0dzQ14VRNL4hVAKrdXOei1sqaUFq0uB6P3x54jd_3YDEc02MTQY9zPQoGXh9AEdGFd0</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Yazdian, E.</creator><creator>Bastani, M. H.</creator><creator>Gazor, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</title><author>Yazdian, E. ; Bastani, M. H. ; Gazor, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f3bd66ead74d84cade56b47eb4ed28ee14dc022a55375d305931565390aadd673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Array signal processing</topic><topic>Covariance matrix</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Minimum Description Length (MDL)</topic><topic>Random Matrix Theory</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yazdian, E.</creatorcontrib><creatorcontrib>Bastani, M. H.</creatorcontrib><creatorcontrib>Gazor, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yazdian, E.</au><au>Bastani, M. H.</au><au>Gazor, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</atitle><btitle>2012 IEEE Workshop on Signal Processing Systems</btitle><stitle>sips</stitle><date>2012-10</date><risdate>2012</risdate><spage>79</spage><epage>84</epage><pages>79-84</pages><issn>2162-3562</issn><eissn>2162-3570</eissn><isbn>146732986X</isbn><isbn>9781467329866</isbn><eisbn>0769548563</eisbn><eisbn>9781467329873</eisbn><eisbn>9780769548562</eisbn><eisbn>1467329878</eisbn><coden>IEEPAD</coden><abstract>This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.</abstract><pub>IEEE</pub><doi>10.1109/SiPS.2012.15</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-3562 |
ispartof | 2012 IEEE Workshop on Signal Processing Systems, 2012, p.79-84 |
issn | 2162-3562 2162-3570 |
language | eng |
recordid | cdi_ieee_primary_6363187 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Array signal processing Covariance matrix Eigenvalues and eigenfunctions Minimum Description Length (MDL) Random Matrix Theory Signal to noise ratio Vectors |
title | Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Source%20Enumeration%20in%20Large%20Arrays%20Based%20on%20Moments%20of%20Eigenvalues%20in%20Sample%20Starved%20Conditions&rft.btitle=2012%20IEEE%20Workshop%20on%20Signal%20Processing%20Systems&rft.au=Yazdian,%20E.&rft.date=2012-10&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.issn=2162-3562&rft.eissn=2162-3570&rft.isbn=146732986X&rft.isbn_list=9781467329866&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SiPS.2012.15&rft_dat=%3Cieee_6IE%3E6363187%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769548563&rft.eisbn_list=9781467329873&rft.eisbn_list=9780769548562&rft.eisbn_list=1467329878&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6363187&rfr_iscdi=true |