Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions

This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yazdian, E., Bastani, M. H., Gazor, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 79
container_title
container_volume
creator Yazdian, E.
Bastani, M. H.
Gazor, S.
description This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.
doi_str_mv 10.1109/SiPS.2012.15
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6363187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6363187</ieee_id><sourcerecordid>6363187</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f3bd66ead74d84cade56b47eb4ed28ee14dc022a55375d305931565390aadd673</originalsourceid><addsrcrecordid>eNo9j0trwkAURqcvqNruuutm_kDSed5JllbSB1haSAvdydW5yhSTyEwU_PcqLV19i3M48DF2J0UupSgf6vBR50pIlUt7xobCQWlNYUGfs4GSoDJtnbhgQ2nAaVUW8H35D0Bds2FKP0KAsQoGbFZ327ggXrXbhiL2oWt5aPkU44r4OEbcJ_6IiTw_greuobZPvFvyKqyo3eF6S-nk19hs1sTrHuPu6E661odTK92wqyWuE93-7Yh9PVWfk5ds-v78OhlPsyCd7bOlnnsAQu-ML8wCPVmYG0dzQ14VRNL4hVAKrdXOei1sqaUFq0uB6P3x54jd_3YDEc02MTQY9zPQoGXh9AEdGFd0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yazdian, E. ; Bastani, M. H. ; Gazor, S.</creator><creatorcontrib>Yazdian, E. ; Bastani, M. H. ; Gazor, S.</creatorcontrib><description>This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.</description><identifier>ISSN: 2162-3562</identifier><identifier>ISBN: 146732986X</identifier><identifier>ISBN: 9781467329866</identifier><identifier>EISSN: 2162-3570</identifier><identifier>EISBN: 0769548563</identifier><identifier>EISBN: 9781467329873</identifier><identifier>EISBN: 9780769548562</identifier><identifier>EISBN: 1467329878</identifier><identifier>DOI: 10.1109/SiPS.2012.15</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Covariance matrix ; Eigenvalues and eigenfunctions ; Minimum Description Length (MDL) ; Random Matrix Theory ; Signal to noise ratio ; Vectors</subject><ispartof>2012 IEEE Workshop on Signal Processing Systems, 2012, p.79-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6363187$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6363187$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yazdian, E.</creatorcontrib><creatorcontrib>Bastani, M. H.</creatorcontrib><creatorcontrib>Gazor, S.</creatorcontrib><title>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</title><title>2012 IEEE Workshop on Signal Processing Systems</title><addtitle>sips</addtitle><description>This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.</description><subject>Array signal processing</subject><subject>Covariance matrix</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Minimum Description Length (MDL)</subject><subject>Random Matrix Theory</subject><subject>Signal to noise ratio</subject><subject>Vectors</subject><issn>2162-3562</issn><issn>2162-3570</issn><isbn>146732986X</isbn><isbn>9781467329866</isbn><isbn>0769548563</isbn><isbn>9781467329873</isbn><isbn>9780769548562</isbn><isbn>1467329878</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0trwkAURqcvqNruuutm_kDSed5JllbSB1haSAvdydW5yhSTyEwU_PcqLV19i3M48DF2J0UupSgf6vBR50pIlUt7xobCQWlNYUGfs4GSoDJtnbhgQ2nAaVUW8H35D0Bds2FKP0KAsQoGbFZ327ggXrXbhiL2oWt5aPkU44r4OEbcJ_6IiTw_greuobZPvFvyKqyo3eF6S-nk19hs1sTrHuPu6E661odTK92wqyWuE93-7Yh9PVWfk5ds-v78OhlPsyCd7bOlnnsAQu-ML8wCPVmYG0dzQ14VRNL4hVAKrdXOei1sqaUFq0uB6P3x54jd_3YDEc02MTQY9zPQoGXh9AEdGFd0</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Yazdian, E.</creator><creator>Bastani, M. H.</creator><creator>Gazor, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201210</creationdate><title>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</title><author>Yazdian, E. ; Bastani, M. H. ; Gazor, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f3bd66ead74d84cade56b47eb4ed28ee14dc022a55375d305931565390aadd673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Array signal processing</topic><topic>Covariance matrix</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Minimum Description Length (MDL)</topic><topic>Random Matrix Theory</topic><topic>Signal to noise ratio</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Yazdian, E.</creatorcontrib><creatorcontrib>Bastani, M. H.</creatorcontrib><creatorcontrib>Gazor, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yazdian, E.</au><au>Bastani, M. H.</au><au>Gazor, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions</atitle><btitle>2012 IEEE Workshop on Signal Processing Systems</btitle><stitle>sips</stitle><date>2012-10</date><risdate>2012</risdate><spage>79</spage><epage>84</epage><pages>79-84</pages><issn>2162-3562</issn><eissn>2162-3570</eissn><isbn>146732986X</isbn><isbn>9781467329866</isbn><eisbn>0769548563</eisbn><eisbn>9781467329873</eisbn><eisbn>9780769548562</eisbn><eisbn>1467329878</eisbn><coden>IEEPAD</coden><abstract>This paper presents a scheme to enumerate the incident waves impinging on a high dimensional uniform linear array using relatively few samples. The approach is based on Minimum Description Length (MDL) criteria and statistical properties of eigenvalues of the Sample Covariance Matrix (SCM). We assume that several models, with each model representing a certain number of sources, will compete and MDL criterion will select the best model with the minimum model complexity and maximum model decision. Statistics of noise eigenvalue of SCM can be approximated by the distributional properties of the eigenvalues given by Marcenko-Pastur distribution in the signal-free SCM. In this paper we use random matrix theory to determine the statistical properties of the moments of noise eigenvalues of SCM to separate noise and signal eigenvalues. Numerical simulations are used to demonstrate the performance of proposed estimator compared with some other enumerators in sample starved regime.</abstract><pub>IEEE</pub><doi>10.1109/SiPS.2012.15</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-3562
ispartof 2012 IEEE Workshop on Signal Processing Systems, 2012, p.79-84
issn 2162-3562
2162-3570
language eng
recordid cdi_ieee_primary_6363187
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Array signal processing
Covariance matrix
Eigenvalues and eigenfunctions
Minimum Description Length (MDL)
Random Matrix Theory
Signal to noise ratio
Vectors
title Source Enumeration in Large Arrays Based on Moments of Eigenvalues in Sample Starved Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Source%20Enumeration%20in%20Large%20Arrays%20Based%20on%20Moments%20of%20Eigenvalues%20in%20Sample%20Starved%20Conditions&rft.btitle=2012%20IEEE%20Workshop%20on%20Signal%20Processing%20Systems&rft.au=Yazdian,%20E.&rft.date=2012-10&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.issn=2162-3562&rft.eissn=2162-3570&rft.isbn=146732986X&rft.isbn_list=9781467329866&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SiPS.2012.15&rft_dat=%3Cieee_6IE%3E6363187%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769548563&rft.eisbn_list=9781467329873&rft.eisbn_list=9780769548562&rft.eisbn_list=1467329878&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6363187&rfr_iscdi=true