Default Bayesian Estimation of the Fundamental Frequency

Joint fundamental frequency and model order estimation is an important problem in several applications. In this paper, a default estimation algorithm based on a minimum of prior information is presented. The algorithm is developed in a Bayesian framework, and it can be applied to both real- and comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on audio, speech, and language processing speech, and language processing, 2013-03, Vol.21 (3), p.598-610
Hauptverfasser: Nielsen, J. K., Christensen, M. G., Jensen, S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Joint fundamental frequency and model order estimation is an important problem in several applications. In this paper, a default estimation algorithm based on a minimum of prior information is presented. The algorithm is developed in a Bayesian framework, and it can be applied to both real- and complex-valued discrete-time signals which may have missing samples or may have been sampled at a non-uniform sampling frequency. The observation model and prior distributions corresponding to the prior information are derived in a consistent fashion using maximum entropy and invariance arguments. Moreover, several approximations of the posterior distributions on the fundamental frequency and the model order are derived, and one of the state-of-the-art joint fundamental frequency and model order estimators is demonstrated to be a special case of one of these approximations. The performance of the approximations are evaluated in a small-scale simulation study on both synthetic and real world signals. The simulations indicate that the proposed algorithm yields more accurate results than previous algorithms. The simulation code is available online.
ISSN:1558-7916
2329-9290
1558-7924
2329-9304
DOI:10.1109/TASL.2012.2229979