Genetic algorithm on speech recognition by using DHMM

This paper uses genetic algorithms to train a codebook for the modeling of Discrete Hidden Markov Model (DHMM) applied to speech recognition. The GA-trained DHMM is then used to increase the recognition rate for Mandarin speeches. Vector quantization based on a codebook is a fundamental process to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shing-Tai Pan, Ching-Fa Chen, Yi-Heng Tsai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1338
container_issue
container_start_page 1333
container_title
container_volume
creator Shing-Tai Pan
Ching-Fa Chen
Yi-Heng Tsai
description This paper uses genetic algorithms to train a codebook for the modeling of Discrete Hidden Markov Model (DHMM) applied to speech recognition. The GA-trained DHMM is then used to increase the recognition rate for Mandarin speeches. Vector quantization based on a codebook is a fundamental process to recognize the speech signal by DHMM. A codebook will be first trained by genetic algorithms through Mandarin speech features. The speech features are then quantized based on the trained codebook. Subsequently, the quantized speech features are statistically used to train the model of DHMM for speech recognition. All the speech features to be recognized should go through the codebook before being fed into the DHMM model for recognition. Experimental results show that the speech recognition rate can be improved by using genetic algorithms to train the model of DHMM.
doi_str_mv 10.1109/ICIEA.2012.6360929
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6360929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6360929</ieee_id><sourcerecordid>6360929</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-889e0ec5577e90c5a9dac3f8407b40cb6a724831a195c01e9b254b28e63013643</originalsourceid><addsrcrecordid>eNo1kM1OwkAUhce_RMS-gG76Aq1z5_8uSUVoAnHDwh2ZjpcyBlrS1gVvb6N4Nic5X3Jychh7Ap4DcHwpi3I-ywUHkRtpOAq8YglaB0pbKwAQr9lEgHaZEGhv2MM_cB-3v8BkQoK7Z0nff_FRDpx0ZsL0ghoaYkj9oW67OOyPaduk_Yko7NOOQls3cYhjVJ3T7z42dfq6XK8f2d3OH3pKLj5lm7f5plhmq_dFWcxWWUQ-ZM4hcQp6XELIg_b46YPcOcVtpXiojLdCOQkeUAcOhJXQqhKOjOQgjZJT9vxXG4loe-ri0Xfn7eUA-QPqFkjo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm on speech recognition by using DHMM</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shing-Tai Pan ; Ching-Fa Chen ; Yi-Heng Tsai</creator><creatorcontrib>Shing-Tai Pan ; Ching-Fa Chen ; Yi-Heng Tsai</creatorcontrib><description>This paper uses genetic algorithms to train a codebook for the modeling of Discrete Hidden Markov Model (DHMM) applied to speech recognition. The GA-trained DHMM is then used to increase the recognition rate for Mandarin speeches. Vector quantization based on a codebook is a fundamental process to recognize the speech signal by DHMM. A codebook will be first trained by genetic algorithms through Mandarin speech features. The speech features are then quantized based on the trained codebook. Subsequently, the quantized speech features are statistically used to train the model of DHMM for speech recognition. All the speech features to be recognized should go through the codebook before being fed into the DHMM model for recognition. Experimental results show that the speech recognition rate can be improved by using genetic algorithms to train the model of DHMM.</description><identifier>ISSN: 2156-2318</identifier><identifier>ISBN: 145772118X</identifier><identifier>ISBN: 9781457721182</identifier><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 9781457721199</identifier><identifier>EISBN: 9781457721175</identifier><identifier>EISBN: 1457721198</identifier><identifier>EISBN: 1457721171</identifier><identifier>DOI: 10.1109/ICIEA.2012.6360929</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; codebook ; Discrete Hidden Markov Model ; genetic algorithm ; Hidden Markov models ; Speech ; Speech coding ; Speech recognition ; Support vector machine classification ; Training</subject><ispartof>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, p.1333-1338</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6360929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6360929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shing-Tai Pan</creatorcontrib><creatorcontrib>Ching-Fa Chen</creatorcontrib><creatorcontrib>Yi-Heng Tsai</creatorcontrib><title>Genetic algorithm on speech recognition by using DHMM</title><title>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)</title><addtitle>ICIEA</addtitle><description>This paper uses genetic algorithms to train a codebook for the modeling of Discrete Hidden Markov Model (DHMM) applied to speech recognition. The GA-trained DHMM is then used to increase the recognition rate for Mandarin speeches. Vector quantization based on a codebook is a fundamental process to recognize the speech signal by DHMM. A codebook will be first trained by genetic algorithms through Mandarin speech features. The speech features are then quantized based on the trained codebook. Subsequently, the quantized speech features are statistically used to train the model of DHMM for speech recognition. All the speech features to be recognized should go through the codebook before being fed into the DHMM model for recognition. Experimental results show that the speech recognition rate can be improved by using genetic algorithms to train the model of DHMM.</description><subject>Biological cells</subject><subject>codebook</subject><subject>Discrete Hidden Markov Model</subject><subject>genetic algorithm</subject><subject>Hidden Markov models</subject><subject>Speech</subject><subject>Speech coding</subject><subject>Speech recognition</subject><subject>Support vector machine classification</subject><subject>Training</subject><issn>2156-2318</issn><issn>2158-2297</issn><isbn>145772118X</isbn><isbn>9781457721182</isbn><isbn>9781457721199</isbn><isbn>9781457721175</isbn><isbn>1457721198</isbn><isbn>1457721171</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OwkAUhce_RMS-gG76Aq1z5_8uSUVoAnHDwh2ZjpcyBlrS1gVvb6N4Nic5X3Jychh7Ap4DcHwpi3I-ywUHkRtpOAq8YglaB0pbKwAQr9lEgHaZEGhv2MM_cB-3v8BkQoK7Z0nff_FRDpx0ZsL0ghoaYkj9oW67OOyPaduk_Yko7NOOQls3cYhjVJ3T7z42dfq6XK8f2d3OH3pKLj5lm7f5plhmq_dFWcxWWUQ-ZM4hcQp6XELIg_b46YPcOcVtpXiojLdCOQkeUAcOhJXQqhKOjOQgjZJT9vxXG4loe-ri0Xfn7eUA-QPqFkjo</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Shing-Tai Pan</creator><creator>Ching-Fa Chen</creator><creator>Yi-Heng Tsai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Genetic algorithm on speech recognition by using DHMM</title><author>Shing-Tai Pan ; Ching-Fa Chen ; Yi-Heng Tsai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-889e0ec5577e90c5a9dac3f8407b40cb6a724831a195c01e9b254b28e63013643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological cells</topic><topic>codebook</topic><topic>Discrete Hidden Markov Model</topic><topic>genetic algorithm</topic><topic>Hidden Markov models</topic><topic>Speech</topic><topic>Speech coding</topic><topic>Speech recognition</topic><topic>Support vector machine classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Shing-Tai Pan</creatorcontrib><creatorcontrib>Ching-Fa Chen</creatorcontrib><creatorcontrib>Yi-Heng Tsai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shing-Tai Pan</au><au>Ching-Fa Chen</au><au>Yi-Heng Tsai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm on speech recognition by using DHMM</atitle><btitle>2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)</btitle><stitle>ICIEA</stitle><date>2012-07</date><risdate>2012</risdate><spage>1333</spage><epage>1338</epage><pages>1333-1338</pages><issn>2156-2318</issn><eissn>2158-2297</eissn><isbn>145772118X</isbn><isbn>9781457721182</isbn><eisbn>9781457721199</eisbn><eisbn>9781457721175</eisbn><eisbn>1457721198</eisbn><eisbn>1457721171</eisbn><abstract>This paper uses genetic algorithms to train a codebook for the modeling of Discrete Hidden Markov Model (DHMM) applied to speech recognition. The GA-trained DHMM is then used to increase the recognition rate for Mandarin speeches. Vector quantization based on a codebook is a fundamental process to recognize the speech signal by DHMM. A codebook will be first trained by genetic algorithms through Mandarin speech features. The speech features are then quantized based on the trained codebook. Subsequently, the quantized speech features are statistically used to train the model of DHMM for speech recognition. All the speech features to be recognized should go through the codebook before being fed into the DHMM model for recognition. Experimental results show that the speech recognition rate can be improved by using genetic algorithms to train the model of DHMM.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA.2012.6360929</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-2318
ispartof 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012, p.1333-1338
issn 2156-2318
2158-2297
language eng
recordid cdi_ieee_primary_6360929
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
codebook
Discrete Hidden Markov Model
genetic algorithm
Hidden Markov models
Speech
Speech coding
Speech recognition
Support vector machine classification
Training
title Genetic algorithm on speech recognition by using DHMM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm%20on%20speech%20recognition%20by%20using%20DHMM&rft.btitle=2012%207th%20IEEE%20Conference%20on%20Industrial%20Electronics%20and%20Applications%20(ICIEA)&rft.au=Shing-Tai%20Pan&rft.date=2012-07&rft.spage=1333&rft.epage=1338&rft.pages=1333-1338&rft.issn=2156-2318&rft.eissn=2158-2297&rft.isbn=145772118X&rft.isbn_list=9781457721182&rft_id=info:doi/10.1109/ICIEA.2012.6360929&rft_dat=%3Cieee_6IE%3E6360929%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721199&rft.eisbn_list=9781457721175&rft.eisbn_list=1457721198&rft.eisbn_list=1457721171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6360929&rfr_iscdi=true