Short-term wind speed forecasting combined time series method and arch model

In order to improve the accuracy of the wind speed forecasting in the wind farm, this paper presents an ARIMA-ARCH model, which considers the heteroscedastic effect between the fluctuation of wind speed and the characteristics of the change of wind speed, to forecast the wind speed. First of all, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meng-Di Wang, Qi-Rong Qiu, Bing-Wei Cui
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue
container_start_page 924
container_title
container_volume 3
creator Meng-Di Wang
Qi-Rong Qiu
Bing-Wei Cui
description In order to improve the accuracy of the wind speed forecasting in the wind farm, this paper presents an ARIMA-ARCH model, which considers the heteroscedastic effect between the fluctuation of wind speed and the characteristics of the change of wind speed, to forecast the wind speed. First of all, the ARIMA model for the wind speed time series is built by SPSS. After that, the high lag order ARCH effect is found in the residual of the ARIMA model by Lagrange multiplier (LM) test. At last, the GARCH model is built for simulating the residual series and thus to construct the ARIMA-ARCH model. Numerical experiments demonstrate the superiority of the proposed method when comparing with the traditional ARIMA model.
doi_str_mv 10.1109/ICMLC.2012.6359477
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6359477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6359477</ieee_id><sourcerecordid>6359477</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-865804f78ed91668796759e63402e16f48adc2c6d65e656058da18fad9ca4f593</originalsourceid><addsrcrecordid>eNo1UMFKxDAUjKjguvYH9JIfaE2a5CU5StF1oeLBPXhbYvNqI9t2SQLi31twncswAzMMQ8gtZxXnzN5vm5e2qWrG6wqEslLrM1JYbbgELbg02p6T638h4YKsag6s5EK8X5EipS-2QEtpLF-R9m2YYy4zxpF-h8nTdET0tJ8jdi7lMH3Sbh4_wrSYOYxIE8aAiY6Yh9lTtyRc7AY6zh4PN-Syd4eExYnXZPf0uGuey_Z1s20e2jJYlksDyjDZa4PecoBlL2hlEYRkNXLopXG-qzvwoBAUMGW846Z33nZO9sqKNbn7qw2IuD_GMLr4sz99IX4BHh1QWg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short-term wind speed forecasting combined time series method and arch model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meng-Di Wang ; Qi-Rong Qiu ; Bing-Wei Cui</creator><creatorcontrib>Meng-Di Wang ; Qi-Rong Qiu ; Bing-Wei Cui</creatorcontrib><description>In order to improve the accuracy of the wind speed forecasting in the wind farm, this paper presents an ARIMA-ARCH model, which considers the heteroscedastic effect between the fluctuation of wind speed and the characteristics of the change of wind speed, to forecast the wind speed. First of all, the ARIMA model for the wind speed time series is built by SPSS. After that, the high lag order ARCH effect is found in the residual of the ARIMA model by Lagrange multiplier (LM) test. At last, the GARCH model is built for simulating the residual series and thus to construct the ARIMA-ARCH model. Numerical experiments demonstrate the superiority of the proposed method when comparing with the traditional ARIMA model.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 1467314846</identifier><identifier>ISBN: 9781467314848</identifier><identifier>EISBN: 9781467314879</identifier><identifier>EISBN: 1467314870</identifier><identifier>EISBN: 9781467314862</identifier><identifier>EISBN: 1467314862</identifier><identifier>DOI: 10.1109/ICMLC.2012.6359477</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; ARCH model ; ARIMA model ; Atmospheric measurements ; Pollution measurement ; Predictive models ; Short-term wind speed forecasting ; Time series analysis ; Wind forecasting ; Wind speed</subject><ispartof>2012 International Conference on Machine Learning and Cybernetics, 2012, Vol.3, p.924-927</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6359477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6359477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meng-Di Wang</creatorcontrib><creatorcontrib>Qi-Rong Qiu</creatorcontrib><creatorcontrib>Bing-Wei Cui</creatorcontrib><title>Short-term wind speed forecasting combined time series method and arch model</title><title>2012 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>In order to improve the accuracy of the wind speed forecasting in the wind farm, this paper presents an ARIMA-ARCH model, which considers the heteroscedastic effect between the fluctuation of wind speed and the characteristics of the change of wind speed, to forecast the wind speed. First of all, the ARIMA model for the wind speed time series is built by SPSS. After that, the high lag order ARCH effect is found in the residual of the ARIMA model by Lagrange multiplier (LM) test. At last, the GARCH model is built for simulating the residual series and thus to construct the ARIMA-ARCH model. Numerical experiments demonstrate the superiority of the proposed method when comparing with the traditional ARIMA model.</description><subject>Abstracts</subject><subject>ARCH model</subject><subject>ARIMA model</subject><subject>Atmospheric measurements</subject><subject>Pollution measurement</subject><subject>Predictive models</subject><subject>Short-term wind speed forecasting</subject><subject>Time series analysis</subject><subject>Wind forecasting</subject><subject>Wind speed</subject><issn>2160-133X</issn><isbn>1467314846</isbn><isbn>9781467314848</isbn><isbn>9781467314879</isbn><isbn>1467314870</isbn><isbn>9781467314862</isbn><isbn>1467314862</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMFKxDAUjKjguvYH9JIfaE2a5CU5StF1oeLBPXhbYvNqI9t2SQLi31twncswAzMMQ8gtZxXnzN5vm5e2qWrG6wqEslLrM1JYbbgELbg02p6T638h4YKsag6s5EK8X5EipS-2QEtpLF-R9m2YYy4zxpF-h8nTdET0tJ8jdi7lMH3Sbh4_wrSYOYxIE8aAiY6Yh9lTtyRc7AY6zh4PN-Syd4eExYnXZPf0uGuey_Z1s20e2jJYlksDyjDZa4PecoBlL2hlEYRkNXLopXG-qzvwoBAUMGW846Z33nZO9sqKNbn7qw2IuD_GMLr4sz99IX4BHh1QWg</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Meng-Di Wang</creator><creator>Qi-Rong Qiu</creator><creator>Bing-Wei Cui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201207</creationdate><title>Short-term wind speed forecasting combined time series method and arch model</title><author>Meng-Di Wang ; Qi-Rong Qiu ; Bing-Wei Cui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-865804f78ed91668796759e63402e16f48adc2c6d65e656058da18fad9ca4f593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abstracts</topic><topic>ARCH model</topic><topic>ARIMA model</topic><topic>Atmospheric measurements</topic><topic>Pollution measurement</topic><topic>Predictive models</topic><topic>Short-term wind speed forecasting</topic><topic>Time series analysis</topic><topic>Wind forecasting</topic><topic>Wind speed</topic><toplevel>online_resources</toplevel><creatorcontrib>Meng-Di Wang</creatorcontrib><creatorcontrib>Qi-Rong Qiu</creatorcontrib><creatorcontrib>Bing-Wei Cui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng-Di Wang</au><au>Qi-Rong Qiu</au><au>Bing-Wei Cui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short-term wind speed forecasting combined time series method and arch model</atitle><btitle>2012 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2012-07</date><risdate>2012</risdate><volume>3</volume><spage>924</spage><epage>927</epage><pages>924-927</pages><issn>2160-133X</issn><isbn>1467314846</isbn><isbn>9781467314848</isbn><eisbn>9781467314879</eisbn><eisbn>1467314870</eisbn><eisbn>9781467314862</eisbn><eisbn>1467314862</eisbn><abstract>In order to improve the accuracy of the wind speed forecasting in the wind farm, this paper presents an ARIMA-ARCH model, which considers the heteroscedastic effect between the fluctuation of wind speed and the characteristics of the change of wind speed, to forecast the wind speed. First of all, the ARIMA model for the wind speed time series is built by SPSS. After that, the high lag order ARCH effect is found in the residual of the ARIMA model by Lagrange multiplier (LM) test. At last, the GARCH model is built for simulating the residual series and thus to construct the ARIMA-ARCH model. Numerical experiments demonstrate the superiority of the proposed method when comparing with the traditional ARIMA model.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2012.6359477</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2012 International Conference on Machine Learning and Cybernetics, 2012, Vol.3, p.924-927
issn 2160-133X
language eng
recordid cdi_ieee_primary_6359477
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Abstracts
ARCH model
ARIMA model
Atmospheric measurements
Pollution measurement
Predictive models
Short-term wind speed forecasting
Time series analysis
Wind forecasting
Wind speed
title Short-term wind speed forecasting combined time series method and arch model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short-term%20wind%20speed%20forecasting%20combined%20time%20series%20method%20and%20arch%20model&rft.btitle=2012%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Meng-Di%20Wang&rft.date=2012-07&rft.volume=3&rft.spage=924&rft.epage=927&rft.pages=924-927&rft.issn=2160-133X&rft.isbn=1467314846&rft.isbn_list=9781467314848&rft_id=info:doi/10.1109/ICMLC.2012.6359477&rft_dat=%3Cieee_6IE%3E6359477%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314879&rft.eisbn_list=1467314870&rft.eisbn_list=9781467314862&rft.eisbn_list=1467314862&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6359477&rfr_iscdi=true