Online Pricing of Secondary Spectrum Access with Unknown Demand Function
We consider a wireless provider who caters to two classes of customers, namely primary users (PUs) and secondary users (SUs). PUs have long term contracts while SUs are admitted and priced according to current availability of excess spectrum. The average rate at which SUs attempt to access the spect...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2012-12, Vol.30 (11), p.2285-2294 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2294 |
---|---|
container_issue | 11 |
container_start_page | 2285 |
container_title | IEEE journal on selected areas in communications |
container_volume | 30 |
creator | Mutlu, H. Alanyali, M. Starobinski, D. Turhan, A. |
description | We consider a wireless provider who caters to two classes of customers, namely primary users (PUs) and secondary users (SUs). PUs have long term contracts while SUs are admitted and priced according to current availability of excess spectrum. The average rate at which SUs attempt to access the spectrum is a function on the currently advertised price, referred to as the demand function. We analyze the problem of maximizing the average profit gained by admissions of SUs, when the demand function is unknown. We introduce a new on-line algorithm, called Measurement-based Threshold Pricing (MTP), that requires the optimization of only two parameters, a price and a threshold, whereby SU calls are admitted and charged a fixed price when the channel occupancy is lower than the threshold and rejected otherwise. At each iteration, MTP measures the average arrival rate of SUs corresponding to a certain test price. We prove that these measurements of the secondary demand are sufficient for MTP to converge to a local optimal price and corresponding optimal threshold, within a number of measurements that is logarithmic in the total number of possible prices. We further provide an adaptive version of MTP that adjusts to time-varying demand and establish its convergence properties. We conduct numerical studies showing the convergence of MTP to near-optimal online profit and its superior performance over a traditional reinforcement learning approach. |
doi_str_mv | 10.1109/JSAC.2012.121220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6354286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6354286</ieee_id><sourcerecordid>2825193981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d5b322d59773c82cb9239eaa839c34e2fabb4a8f0a554d47ecadf4fbfea67f553</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpcFL15S9zubY6nWKoUKteew2cxqarKp2YTivzch4sHTXJ73nZkHoWtKZpSS5P5lO1_MGKFsRhlljJygCZVSR4QQfYomJOY80jFV5-gihD0hVAjNJmi18WXhAb82hS38O64d3oKtfW6ab7w9gG2brsJzayEEfCzaD7zzn74-evwAlfE5XnbetkXtL9GZM2WAq985Rbvl49tiFa03T8-L-TqynIk2ymXGGctlEsfcamazhPEEjNE8sVwAcybLhNGOGClFLmKwJnfCZQ6Mip2UfIruxt5DU391ENq0KoKFsjQe6i6klCkVUy7FgN7-Q_d11_j-up4iItaKKtJTZKRsU4fQgEsPTVH176eUpIPadFCbDmrTUW0fuRkjBQD84apfyrTiP47odFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1204786160</pqid></control><display><type>article</type><title>Online Pricing of Secondary Spectrum Access with Unknown Demand Function</title><source>IEEE Electronic Library (IEL)</source><creator>Mutlu, H. ; Alanyali, M. ; Starobinski, D. ; Turhan, A.</creator><creatorcontrib>Mutlu, H. ; Alanyali, M. ; Starobinski, D. ; Turhan, A.</creatorcontrib><description>We consider a wireless provider who caters to two classes of customers, namely primary users (PUs) and secondary users (SUs). PUs have long term contracts while SUs are admitted and priced according to current availability of excess spectrum. The average rate at which SUs attempt to access the spectrum is a function on the currently advertised price, referred to as the demand function. We analyze the problem of maximizing the average profit gained by admissions of SUs, when the demand function is unknown. We introduce a new on-line algorithm, called Measurement-based Threshold Pricing (MTP), that requires the optimization of only two parameters, a price and a threshold, whereby SU calls are admitted and charged a fixed price when the channel occupancy is lower than the threshold and rejected otherwise. At each iteration, MTP measures the average arrival rate of SUs corresponding to a certain test price. We prove that these measurements of the secondary demand are sufficient for MTP to converge to a local optimal price and corresponding optimal threshold, within a number of measurements that is logarithmic in the total number of possible prices. We further provide an adaptive version of MTP that adjusts to time-varying demand and establish its convergence properties. We conduct numerical studies showing the convergence of MTP to near-optimal online profit and its superior performance over a traditional reinforcement learning approach.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2012.121220</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Communication networks ; congestion pricing ; Demand ; Economics ; Management of electromagnetic spectrum ; Marketing ; Mathematical analysis ; Mathematical models ; On-line systems ; Operations research ; Optimization ; Pricing ; Profits ; real-time algorithms ; secondary markets ; Studies ; Telecommunication services ; Thresholds ; Wireless networks</subject><ispartof>IEEE journal on selected areas in communications, 2012-12, Vol.30 (11), p.2285-2294</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-d5b322d59773c82cb9239eaa839c34e2fabb4a8f0a554d47ecadf4fbfea67f553</citedby><cites>FETCH-LOGICAL-c324t-d5b322d59773c82cb9239eaa839c34e2fabb4a8f0a554d47ecadf4fbfea67f553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6354286$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6354286$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mutlu, H.</creatorcontrib><creatorcontrib>Alanyali, M.</creatorcontrib><creatorcontrib>Starobinski, D.</creatorcontrib><creatorcontrib>Turhan, A.</creatorcontrib><title>Online Pricing of Secondary Spectrum Access with Unknown Demand Function</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We consider a wireless provider who caters to two classes of customers, namely primary users (PUs) and secondary users (SUs). PUs have long term contracts while SUs are admitted and priced according to current availability of excess spectrum. The average rate at which SUs attempt to access the spectrum is a function on the currently advertised price, referred to as the demand function. We analyze the problem of maximizing the average profit gained by admissions of SUs, when the demand function is unknown. We introduce a new on-line algorithm, called Measurement-based Threshold Pricing (MTP), that requires the optimization of only two parameters, a price and a threshold, whereby SU calls are admitted and charged a fixed price when the channel occupancy is lower than the threshold and rejected otherwise. At each iteration, MTP measures the average arrival rate of SUs corresponding to a certain test price. We prove that these measurements of the secondary demand are sufficient for MTP to converge to a local optimal price and corresponding optimal threshold, within a number of measurements that is logarithmic in the total number of possible prices. We further provide an adaptive version of MTP that adjusts to time-varying demand and establish its convergence properties. We conduct numerical studies showing the convergence of MTP to near-optimal online profit and its superior performance over a traditional reinforcement learning approach.</description><subject>Communication networks</subject><subject>congestion pricing</subject><subject>Demand</subject><subject>Economics</subject><subject>Management of electromagnetic spectrum</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>On-line systems</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Profits</subject><subject>real-time algorithms</subject><subject>secondary markets</subject><subject>Studies</subject><subject>Telecommunication services</subject><subject>Thresholds</subject><subject>Wireless networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpcFL15S9zubY6nWKoUKteew2cxqarKp2YTivzch4sHTXJ73nZkHoWtKZpSS5P5lO1_MGKFsRhlljJygCZVSR4QQfYomJOY80jFV5-gihD0hVAjNJmi18WXhAb82hS38O64d3oKtfW6ab7w9gG2brsJzayEEfCzaD7zzn74-evwAlfE5XnbetkXtL9GZM2WAq985Rbvl49tiFa03T8-L-TqynIk2ymXGGctlEsfcamazhPEEjNE8sVwAcybLhNGOGClFLmKwJnfCZQ6Mip2UfIruxt5DU391ENq0KoKFsjQe6i6klCkVUy7FgN7-Q_d11_j-up4iItaKKtJTZKRsU4fQgEsPTVH176eUpIPadFCbDmrTUW0fuRkjBQD84apfyrTiP47odFo</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Mutlu, H.</creator><creator>Alanyali, M.</creator><creator>Starobinski, D.</creator><creator>Turhan, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20121201</creationdate><title>Online Pricing of Secondary Spectrum Access with Unknown Demand Function</title><author>Mutlu, H. ; Alanyali, M. ; Starobinski, D. ; Turhan, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d5b322d59773c82cb9239eaa839c34e2fabb4a8f0a554d47ecadf4fbfea67f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Communication networks</topic><topic>congestion pricing</topic><topic>Demand</topic><topic>Economics</topic><topic>Management of electromagnetic spectrum</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>On-line systems</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Profits</topic><topic>real-time algorithms</topic><topic>secondary markets</topic><topic>Studies</topic><topic>Telecommunication services</topic><topic>Thresholds</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mutlu, H.</creatorcontrib><creatorcontrib>Alanyali, M.</creatorcontrib><creatorcontrib>Starobinski, D.</creatorcontrib><creatorcontrib>Turhan, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mutlu, H.</au><au>Alanyali, M.</au><au>Starobinski, D.</au><au>Turhan, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Pricing of Secondary Spectrum Access with Unknown Demand Function</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>30</volume><issue>11</issue><spage>2285</spage><epage>2294</epage><pages>2285-2294</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We consider a wireless provider who caters to two classes of customers, namely primary users (PUs) and secondary users (SUs). PUs have long term contracts while SUs are admitted and priced according to current availability of excess spectrum. The average rate at which SUs attempt to access the spectrum is a function on the currently advertised price, referred to as the demand function. We analyze the problem of maximizing the average profit gained by admissions of SUs, when the demand function is unknown. We introduce a new on-line algorithm, called Measurement-based Threshold Pricing (MTP), that requires the optimization of only two parameters, a price and a threshold, whereby SU calls are admitted and charged a fixed price when the channel occupancy is lower than the threshold and rejected otherwise. At each iteration, MTP measures the average arrival rate of SUs corresponding to a certain test price. We prove that these measurements of the secondary demand are sufficient for MTP to converge to a local optimal price and corresponding optimal threshold, within a number of measurements that is logarithmic in the total number of possible prices. We further provide an adaptive version of MTP that adjusts to time-varying demand and establish its convergence properties. We conduct numerical studies showing the convergence of MTP to near-optimal online profit and its superior performance over a traditional reinforcement learning approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2012.121220</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2012-12, Vol.30 (11), p.2285-2294 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_ieee_primary_6354286 |
source | IEEE Electronic Library (IEL) |
subjects | Communication networks congestion pricing Demand Economics Management of electromagnetic spectrum Marketing Mathematical analysis Mathematical models On-line systems Operations research Optimization Pricing Profits real-time algorithms secondary markets Studies Telecommunication services Thresholds Wireless networks |
title | Online Pricing of Secondary Spectrum Access with Unknown Demand Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Pricing%20of%20Secondary%20Spectrum%20Access%20with%20Unknown%20Demand%20Function&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Mutlu,%20H.&rft.date=2012-12-01&rft.volume=30&rft.issue=11&rft.spage=2285&rft.epage=2294&rft.pages=2285-2294&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2012.121220&rft_dat=%3Cproquest_RIE%3E2825193981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1204786160&rft_id=info:pmid/&rft_ieee_id=6354286&rfr_iscdi=true |