Boosting for interactive man-made structure classification

We describe an interactive framework for man-made structure classification. Our system is able to help an image analyst to define a query that is adapted to various image and geographic contexts. It offers a GIS-like interface for visually selecting the training region samples and a fast and efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chauffert, N., Israel, J., Le Saux, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6859
container_issue
container_start_page 6856
container_title
container_volume
creator Chauffert, N.
Israel, J.
Le Saux, B.
description We describe an interactive framework for man-made structure classification. Our system is able to help an image analyst to define a query that is adapted to various image and geographic contexts. It offers a GIS-like interface for visually selecting the training region samples and a fast and efficient sample description by histogram of oriented gradients and local binary patterns. To learn a discrimination rule in this feature space, our system relies on the online gradient-boost learning algorithm for which we defined a new family of loss functions. We chose non-convex loss-functions in order to be robust to mislabelling and proposed a generic way to incorporate prior information about the training data. We show it achieves better performances than other state-of-the-art machine-learning methods on various man-structure detection problems.
doi_str_mv 10.1109/IGARSS.2012.6352588
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6352588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6352588</ieee_id><sourcerecordid>6352588</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f301f88dee59afdf01ec3b1fcc6fda1f90adb16b0df98d4ab904aad72164ae1d3</originalsourceid><addsrcrecordid>eNpNkF1LwzAYheMXOGZ_wW76B1rzNm2aeDeHm4OB4PR6vE3eSGRtJckE_70De-G5eTg8cC4OYwvgJQDX99vN8nW_LysOVSlFUzVKXbBMtwpq2QqAc79kswoaUbSci6v_TnK4npzUWt6yLMZPfo4CJVoxYw-P4xiTHz5yN4bcD4kCmuS_Ke9xKHq0lMcUTiadAuXmiDF65w0mPw537MbhMVI2cc7e109vq-di97LZrpa7wkPbpMIJDk4pS9RodNZxICM6cMZIZxGc5mg7kB23TitbY6d5jWjbCmSNBFbM2eJv1xPR4Sv4HsPPYXpC_AI0u0-b</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Boosting for interactive man-made structure classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chauffert, N. ; Israel, J. ; Le Saux, B.</creator><creatorcontrib>Chauffert, N. ; Israel, J. ; Le Saux, B.</creatorcontrib><description>We describe an interactive framework for man-made structure classification. Our system is able to help an image analyst to define a query that is adapted to various image and geographic contexts. It offers a GIS-like interface for visually selecting the training region samples and a fast and efficient sample description by histogram of oriented gradients and local binary patterns. To learn a discrimination rule in this feature space, our system relies on the online gradient-boost learning algorithm for which we defined a new family of loss functions. We chose non-convex loss-functions in order to be robust to mislabelling and proposed a generic way to incorporate prior information about the training data. We show it achieves better performances than other state-of-the-art machine-learning methods on various man-structure detection problems.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781467311601</identifier><identifier>ISBN: 146731160X</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781467311588</identifier><identifier>EISBN: 1467311588</identifier><identifier>EISBN: 9781467311595</identifier><identifier>EISBN: 1467311596</identifier><identifier>DOI: 10.1109/IGARSS.2012.6352588</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boosting ; Context ; Feature extraction ; Histograms ; Image classification ; Machine learning ; Object detection ; Remote sensing ; Training ; Training data</subject><ispartof>2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.6856-6859</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6352588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6352588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chauffert, N.</creatorcontrib><creatorcontrib>Israel, J.</creatorcontrib><creatorcontrib>Le Saux, B.</creatorcontrib><title>Boosting for interactive man-made structure classification</title><title>2012 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>We describe an interactive framework for man-made structure classification. Our system is able to help an image analyst to define a query that is adapted to various image and geographic contexts. It offers a GIS-like interface for visually selecting the training region samples and a fast and efficient sample description by histogram of oriented gradients and local binary patterns. To learn a discrimination rule in this feature space, our system relies on the online gradient-boost learning algorithm for which we defined a new family of loss functions. We chose non-convex loss-functions in order to be robust to mislabelling and proposed a generic way to incorporate prior information about the training data. We show it achieves better performances than other state-of-the-art machine-learning methods on various man-structure detection problems.</description><subject>Boosting</subject><subject>Context</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Remote sensing</subject><subject>Training</subject><subject>Training data</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311588</isbn><isbn>1467311588</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAYheMXOGZ_wW76B1rzNm2aeDeHm4OB4PR6vE3eSGRtJckE_70De-G5eTg8cC4OYwvgJQDX99vN8nW_LysOVSlFUzVKXbBMtwpq2QqAc79kswoaUbSci6v_TnK4npzUWt6yLMZPfo4CJVoxYw-P4xiTHz5yN4bcD4kCmuS_Ke9xKHq0lMcUTiadAuXmiDF65w0mPw537MbhMVI2cc7e109vq-di97LZrpa7wkPbpMIJDk4pS9RodNZxICM6cMZIZxGc5mg7kB23TitbY6d5jWjbCmSNBFbM2eJv1xPR4Sv4HsPPYXpC_AI0u0-b</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Chauffert, N.</creator><creator>Israel, J.</creator><creator>Le Saux, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Boosting for interactive man-made structure classification</title><author>Chauffert, N. ; Israel, J. ; Le Saux, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f301f88dee59afdf01ec3b1fcc6fda1f90adb16b0df98d4ab904aad72164ae1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boosting</topic><topic>Context</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Remote sensing</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Chauffert, N.</creatorcontrib><creatorcontrib>Israel, J.</creatorcontrib><creatorcontrib>Le Saux, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chauffert, N.</au><au>Israel, J.</au><au>Le Saux, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Boosting for interactive man-made structure classification</atitle><btitle>2012 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2012-07</date><risdate>2012</risdate><spage>6856</spage><epage>6859</epage><pages>6856-6859</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781467311601</isbn><isbn>146731160X</isbn><eisbn>9781467311588</eisbn><eisbn>1467311588</eisbn><eisbn>9781467311595</eisbn><eisbn>1467311596</eisbn><abstract>We describe an interactive framework for man-made structure classification. Our system is able to help an image analyst to define a query that is adapted to various image and geographic contexts. It offers a GIS-like interface for visually selecting the training region samples and a fast and efficient sample description by histogram of oriented gradients and local binary patterns. To learn a discrimination rule in this feature space, our system relies on the online gradient-boost learning algorithm for which we defined a new family of loss functions. We chose non-convex loss-functions in order to be robust to mislabelling and proposed a generic way to incorporate prior information about the training data. We show it achieves better performances than other state-of-the-art machine-learning methods on various man-structure detection problems.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2012.6352588</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.6856-6859
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_6352588
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Boosting
Context
Feature extraction
Histograms
Image classification
Machine learning
Object detection
Remote sensing
Training
Training data
title Boosting for interactive man-made structure classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Boosting%20for%20interactive%20man-made%20structure%20classification&rft.btitle=2012%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Chauffert,%20N.&rft.date=2012-07&rft.spage=6856&rft.epage=6859&rft.pages=6856-6859&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781467311601&rft.isbn_list=146731160X&rft_id=info:doi/10.1109/IGARSS.2012.6352588&rft_dat=%3Cieee_6IE%3E6352588%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311588&rft.eisbn_list=1467311588&rft.eisbn_list=9781467311595&rft.eisbn_list=1467311596&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6352588&rfr_iscdi=true