Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis

Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Petitjean, F., Inglada, J., Gancarski, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5429
container_issue
container_start_page 5426
container_title
container_volume
creator Petitjean, F.
Inglada, J.
Gancarski, P.
description Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.
doi_str_mv 10.1109/IGARSS.2012.6352379
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6352379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6352379</ieee_id><sourcerecordid>6352379</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-93319a62ec6c122e612a571daec169bc8f7cb624355775edb0c1e3a7757098813</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRdUXNKT5gmz0A041mui1DKFNDYFCnW66CYo8CWr9CJZLyd_XUC96N3PhHAZmGJuDWAAI95hvVm9FsZAC5EKjkmjcFZs5Y2GpDQIoa6_ZRILCzAiBN_-ZFnA7Mu2cvmezlD7FEAsWDU7YR970XVt-h9ic-LmLbce_mvanovJEPDa8p_rcdr7iZUy9bwIlfhycwvdUVbEnntd-MHexJl5QFwfuG19dUkwP7O7oq0SzcU7Z-_PTbv2SbV83-Xq1zSIY1WcOEZzXkoIOICVpkF4ZKD0F0O4Q7NGEg5ZLVMoYReVBBCD0QzfCWQs4ZfO_vZGI9sMNte8u-_FT-AuYzljR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Petitjean, F. ; Inglada, J. ; Gancarski, P.</creator><creatorcontrib>Petitjean, F. ; Inglada, J. ; Gancarski, P.</creatorcontrib><description>Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781467311601</identifier><identifier>ISBN: 146731160X</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781467311588</identifier><identifier>EISBN: 1467311588</identifier><identifier>EISBN: 9781467311595</identifier><identifier>EISBN: 1467311596</identifier><identifier>DOI: 10.1109/IGARSS.2012.6352379</identifier><language>eng</language><publisher>IEEE</publisher><subject>Crops ; Image classification ; Knowledge management ; Radiometry ; Remote sensing ; Satellite broadcasting ; Satellites ; Spatial resolution ; Time measurement ; Time series analysis</subject><ispartof>2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.5426-5429</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6352379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6352379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Petitjean, F.</creatorcontrib><creatorcontrib>Inglada, J.</creatorcontrib><creatorcontrib>Gancarski, P.</creatorcontrib><title>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</title><title>2012 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.</description><subject>Crops</subject><subject>Image classification</subject><subject>Knowledge management</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Satellite broadcasting</subject><subject>Satellites</subject><subject>Spatial resolution</subject><subject>Time measurement</subject><subject>Time series analysis</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311588</isbn><isbn>1467311588</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRdUXNKT5gmz0A041mui1DKFNDYFCnW66CYo8CWr9CJZLyd_XUC96N3PhHAZmGJuDWAAI95hvVm9FsZAC5EKjkmjcFZs5Y2GpDQIoa6_ZRILCzAiBN_-ZFnA7Mu2cvmezlD7FEAsWDU7YR970XVt-h9ic-LmLbce_mvanovJEPDa8p_rcdr7iZUy9bwIlfhycwvdUVbEnntd-MHexJl5QFwfuG19dUkwP7O7oq0SzcU7Z-_PTbv2SbV83-Xq1zSIY1WcOEZzXkoIOICVpkF4ZKD0F0O4Q7NGEg5ZLVMoYReVBBCD0QzfCWQs4ZfO_vZGI9sMNte8u-_FT-AuYzljR</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Petitjean, F.</creator><creator>Inglada, J.</creator><creator>Gancarski, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</title><author>Petitjean, F. ; Inglada, J. ; Gancarski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-93319a62ec6c122e612a571daec169bc8f7cb624355775edb0c1e3a7757098813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Crops</topic><topic>Image classification</topic><topic>Knowledge management</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Satellite broadcasting</topic><topic>Satellites</topic><topic>Spatial resolution</topic><topic>Time measurement</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Petitjean, F.</creatorcontrib><creatorcontrib>Inglada, J.</creatorcontrib><creatorcontrib>Gancarski, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Petitjean, F.</au><au>Inglada, J.</au><au>Gancarski, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</atitle><btitle>2012 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2012-07</date><risdate>2012</risdate><spage>5426</spage><epage>5429</epage><pages>5426-5429</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781467311601</isbn><isbn>146731160X</isbn><eisbn>9781467311588</eisbn><eisbn>1467311588</eisbn><eisbn>9781467311595</eisbn><eisbn>1467311596</eisbn><abstract>Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2012.6352379</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.5426-5429
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_6352379
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Crops
Image classification
Knowledge management
Radiometry
Remote sensing
Satellite broadcasting
Satellites
Spatial resolution
Time measurement
Time series analysis
title Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Introducing%20prior%20knowledge%20in%20temporal%20distances%20for%20Satellite%20Image%20Time%20Series%20analysis&rft.btitle=2012%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Petitjean,%20F.&rft.date=2012-07&rft.spage=5426&rft.epage=5429&rft.pages=5426-5429&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781467311601&rft.isbn_list=146731160X&rft_id=info:doi/10.1109/IGARSS.2012.6352379&rft_dat=%3Cieee_6IE%3E6352379%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311588&rft.eisbn_list=1467311588&rft.eisbn_list=9781467311595&rft.eisbn_list=1467311596&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6352379&rfr_iscdi=true