Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis
Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to pro...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5429 |
---|---|
container_issue | |
container_start_page | 5426 |
container_title | |
container_volume | |
creator | Petitjean, F. Inglada, J. Gancarski, P. |
description | Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena. |
doi_str_mv | 10.1109/IGARSS.2012.6352379 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6352379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6352379</ieee_id><sourcerecordid>6352379</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-93319a62ec6c122e612a571daec169bc8f7cb624355775edb0c1e3a7757098813</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRdUXNKT5gmz0A041mui1DKFNDYFCnW66CYo8CWr9CJZLyd_XUC96N3PhHAZmGJuDWAAI95hvVm9FsZAC5EKjkmjcFZs5Y2GpDQIoa6_ZRILCzAiBN_-ZFnA7Mu2cvmezlD7FEAsWDU7YR970XVt-h9ic-LmLbce_mvanovJEPDa8p_rcdr7iZUy9bwIlfhycwvdUVbEnntd-MHexJl5QFwfuG19dUkwP7O7oq0SzcU7Z-_PTbv2SbV83-Xq1zSIY1WcOEZzXkoIOICVpkF4ZKD0F0O4Q7NGEg5ZLVMoYReVBBCD0QzfCWQs4ZfO_vZGI9sMNte8u-_FT-AuYzljR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Petitjean, F. ; Inglada, J. ; Gancarski, P.</creator><creatorcontrib>Petitjean, F. ; Inglada, J. ; Gancarski, P.</creatorcontrib><description>Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781467311601</identifier><identifier>ISBN: 146731160X</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781467311588</identifier><identifier>EISBN: 1467311588</identifier><identifier>EISBN: 9781467311595</identifier><identifier>EISBN: 1467311596</identifier><identifier>DOI: 10.1109/IGARSS.2012.6352379</identifier><language>eng</language><publisher>IEEE</publisher><subject>Crops ; Image classification ; Knowledge management ; Radiometry ; Remote sensing ; Satellite broadcasting ; Satellites ; Spatial resolution ; Time measurement ; Time series analysis</subject><ispartof>2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.5426-5429</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6352379$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6352379$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Petitjean, F.</creatorcontrib><creatorcontrib>Inglada, J.</creatorcontrib><creatorcontrib>Gancarski, P.</creatorcontrib><title>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</title><title>2012 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.</description><subject>Crops</subject><subject>Image classification</subject><subject>Knowledge management</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Satellite broadcasting</subject><subject>Satellites</subject><subject>Spatial resolution</subject><subject>Time measurement</subject><subject>Time series analysis</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311588</isbn><isbn>1467311588</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtqwzAQRdUXNKT5gmz0A041mui1DKFNDYFCnW66CYo8CWr9CJZLyd_XUC96N3PhHAZmGJuDWAAI95hvVm9FsZAC5EKjkmjcFZs5Y2GpDQIoa6_ZRILCzAiBN_-ZFnA7Mu2cvmezlD7FEAsWDU7YR970XVt-h9ic-LmLbce_mvanovJEPDa8p_rcdr7iZUy9bwIlfhycwvdUVbEnntd-MHexJl5QFwfuG19dUkwP7O7oq0SzcU7Z-_PTbv2SbV83-Xq1zSIY1WcOEZzXkoIOICVpkF4ZKD0F0O4Q7NGEg5ZLVMoYReVBBCD0QzfCWQs4ZfO_vZGI9sMNte8u-_FT-AuYzljR</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Petitjean, F.</creator><creator>Inglada, J.</creator><creator>Gancarski, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</title><author>Petitjean, F. ; Inglada, J. ; Gancarski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-93319a62ec6c122e612a571daec169bc8f7cb624355775edb0c1e3a7757098813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Crops</topic><topic>Image classification</topic><topic>Knowledge management</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Satellite broadcasting</topic><topic>Satellites</topic><topic>Spatial resolution</topic><topic>Time measurement</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Petitjean, F.</creatorcontrib><creatorcontrib>Inglada, J.</creatorcontrib><creatorcontrib>Gancarski, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Petitjean, F.</au><au>Inglada, J.</au><au>Gancarski, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis</atitle><btitle>2012 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2012-07</date><risdate>2012</risdate><spage>5426</spage><epage>5429</epage><pages>5426-5429</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781467311601</isbn><isbn>146731160X</isbn><eisbn>9781467311588</eisbn><eisbn>1467311588</eisbn><eisbn>9781467311595</eisbn><eisbn>1467311596</eisbn><abstract>Satellite Image Time Series are becoming increasingly available and will continue to do so in the coming years thanks to the launch of space missions which aim at providing a coverage of the Earth every few days with high spatial resolution. In the case of optical imagery, it will be possible to produce land use and cover change maps with detailed nomenclatures. It has been shown that the Dynamic Time Warping similarity measure is a consistent tool for the comparison of radiometric profiles of temporal evolution. Actually, it makes it possible to compare time series with both different lengths and different sampling. This property allows us to make the most of partially cloud-covered images, but also to transfer the knowledge learned on an agronomical year in order to classify the next year without using reference data. This article pursues this work on satellite image time series analysis and focuses on the introduction of constraints in the distance in order to fit to the expert's knowledge about the observed phenomena.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2012.6352379</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-6996 |
ispartof | 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.5426-5429 |
issn | 2153-6996 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_6352379 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Crops Image classification Knowledge management Radiometry Remote sensing Satellite broadcasting Satellites Spatial resolution Time measurement Time series analysis |
title | Introducing prior knowledge in temporal distances for Satellite Image Time Series analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Introducing%20prior%20knowledge%20in%20temporal%20distances%20for%20Satellite%20Image%20Time%20Series%20analysis&rft.btitle=2012%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Petitjean,%20F.&rft.date=2012-07&rft.spage=5426&rft.epage=5429&rft.pages=5426-5429&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781467311601&rft.isbn_list=146731160X&rft_id=info:doi/10.1109/IGARSS.2012.6352379&rft_dat=%3Cieee_6IE%3E6352379%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311588&rft.eisbn_list=1467311588&rft.eisbn_list=9781467311595&rft.eisbn_list=1467311596&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6352379&rfr_iscdi=true |