Finding an OSPA based object detector by aweakly supervised technique

The design of multitarget tracking procedures includes, as the most time consuming steps, the definition of the objective class and the formulation of the detection criteria. In this paper we investigate a solution toward an intuitive way for implementing a detector for any ad-hoc application. We ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Addesso, P., Conte, R., Longo, M., Restaino, R., Vivone, G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4406
container_issue
container_start_page 4403
container_title
container_volume
creator Addesso, P.
Conte, R.
Longo, M.
Restaino, R.
Vivone, G.
description The design of multitarget tracking procedures includes, as the most time consuming steps, the definition of the objective class and the formulation of the detection criteria. In this paper we investigate a solution toward an intuitive way for implementing a detector for any ad-hoc application. We capitalize on the OSPA metric to discriminate between the semantic object class of interest and other look-alike classes starting from a short number of unlabeled markers. We propose an illustrative algorithm with a toy example, then we apply it to two real images, the first acquired by SEVIRI, the second by MERIS. In the first case we discriminate between lakes, sea and look-alike clouds, in the other between ground and sea ice. We show how semantic classes with very similar spectral properties can be separated even in the presence of uncertainties or errors in the ground truth.
doi_str_mv 10.1109/IGARSS.2012.6350397
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6350397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6350397</ieee_id><sourcerecordid>6350397</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-480a65ed843a34f04966dd71d8fd2bd6f50a1f51f457467521d0e5b46c8709963</originalsourceid><addsrcrecordid>eNpNkE1PwkAYhNevRIL9BVz2D7S-b_f7SAggCQnG6pls2V1dxIJt0fTfW2MPzmUOz2QyGUImCBkimPvVcvpUFFkOmGeSCWBGXZDEKI1cKoYotL4koxwFSxUAu_rPJOD1wKQx8pYkTbOHXho1U2xE5otYuVi9UlvRTfE4paVtvKPHcu93LXW-7e1Y07Kj9tvb90NHm_PJ11_xN9XDtyp-nv0duQn20Phk8DF5WcyfZw_perNczabrNKISbco1WCm805xZxgNwI6VzCp0OLi-dDAIsBoGBC9XvFzk68KLkcqcV9PPZmEz-eqP3fnuq44etu-1wCvsBzGJQJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Finding an OSPA based object detector by aweakly supervised technique</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Addesso, P. ; Conte, R. ; Longo, M. ; Restaino, R. ; Vivone, G.</creator><creatorcontrib>Addesso, P. ; Conte, R. ; Longo, M. ; Restaino, R. ; Vivone, G.</creatorcontrib><description>The design of multitarget tracking procedures includes, as the most time consuming steps, the definition of the objective class and the formulation of the detection criteria. In this paper we investigate a solution toward an intuitive way for implementing a detector for any ad-hoc application. We capitalize on the OSPA metric to discriminate between the semantic object class of interest and other look-alike classes starting from a short number of unlabeled markers. We propose an illustrative algorithm with a toy example, then we apply it to two real images, the first acquired by SEVIRI, the second by MERIS. In the first case we discriminate between lakes, sea and look-alike clouds, in the other between ground and sea ice. We show how semantic classes with very similar spectral properties can be separated even in the presence of uncertainties or errors in the ground truth.</description><identifier>ISSN: 2153-6996</identifier><identifier>ISBN: 9781467311601</identifier><identifier>ISBN: 146731160X</identifier><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781467311588</identifier><identifier>EISBN: 1467311588</identifier><identifier>EISBN: 9781467311595</identifier><identifier>EISBN: 1467311596</identifier><identifier>DOI: 10.1109/IGARSS.2012.6350397</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Clouds ; Detectors ; Lakes ; Measurement ; Multi-Object Detection ; OSPA metric ; Radar tracking ; Sea ice ; Search problems ; Tracking</subject><ispartof>2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.4403-4406</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6350397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6350397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Addesso, P.</creatorcontrib><creatorcontrib>Conte, R.</creatorcontrib><creatorcontrib>Longo, M.</creatorcontrib><creatorcontrib>Restaino, R.</creatorcontrib><creatorcontrib>Vivone, G.</creatorcontrib><title>Finding an OSPA based object detector by aweakly supervised technique</title><title>2012 IEEE International Geoscience and Remote Sensing Symposium</title><addtitle>IGARSS</addtitle><description>The design of multitarget tracking procedures includes, as the most time consuming steps, the definition of the objective class and the formulation of the detection criteria. In this paper we investigate a solution toward an intuitive way for implementing a detector for any ad-hoc application. We capitalize on the OSPA metric to discriminate between the semantic object class of interest and other look-alike classes starting from a short number of unlabeled markers. We propose an illustrative algorithm with a toy example, then we apply it to two real images, the first acquired by SEVIRI, the second by MERIS. In the first case we discriminate between lakes, sea and look-alike clouds, in the other between ground and sea ice. We show how semantic classes with very similar spectral properties can be separated even in the presence of uncertainties or errors in the ground truth.</description><subject>Classification</subject><subject>Clouds</subject><subject>Detectors</subject><subject>Lakes</subject><subject>Measurement</subject><subject>Multi-Object Detection</subject><subject>OSPA metric</subject><subject>Radar tracking</subject><subject>Sea ice</subject><subject>Search problems</subject><subject>Tracking</subject><issn>2153-6996</issn><issn>2153-7003</issn><isbn>9781467311601</isbn><isbn>146731160X</isbn><isbn>9781467311588</isbn><isbn>1467311588</isbn><isbn>9781467311595</isbn><isbn>1467311596</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAYhNevRIL9BVz2D7S-b_f7SAggCQnG6pls2V1dxIJt0fTfW2MPzmUOz2QyGUImCBkimPvVcvpUFFkOmGeSCWBGXZDEKI1cKoYotL4koxwFSxUAu_rPJOD1wKQx8pYkTbOHXho1U2xE5otYuVi9UlvRTfE4paVtvKPHcu93LXW-7e1Y07Kj9tvb90NHm_PJ11_xN9XDtyp-nv0duQn20Phk8DF5WcyfZw_perNczabrNKISbco1WCm805xZxgNwI6VzCp0OLi-dDAIsBoGBC9XvFzk68KLkcqcV9PPZmEz-eqP3fnuq44etu-1wCvsBzGJQJw</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Addesso, P.</creator><creator>Conte, R.</creator><creator>Longo, M.</creator><creator>Restaino, R.</creator><creator>Vivone, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201207</creationdate><title>Finding an OSPA based object detector by aweakly supervised technique</title><author>Addesso, P. ; Conte, R. ; Longo, M. ; Restaino, R. ; Vivone, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-480a65ed843a34f04966dd71d8fd2bd6f50a1f51f457467521d0e5b46c8709963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Clouds</topic><topic>Detectors</topic><topic>Lakes</topic><topic>Measurement</topic><topic>Multi-Object Detection</topic><topic>OSPA metric</topic><topic>Radar tracking</topic><topic>Sea ice</topic><topic>Search problems</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Addesso, P.</creatorcontrib><creatorcontrib>Conte, R.</creatorcontrib><creatorcontrib>Longo, M.</creatorcontrib><creatorcontrib>Restaino, R.</creatorcontrib><creatorcontrib>Vivone, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Addesso, P.</au><au>Conte, R.</au><au>Longo, M.</au><au>Restaino, R.</au><au>Vivone, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Finding an OSPA based object detector by aweakly supervised technique</atitle><btitle>2012 IEEE International Geoscience and Remote Sensing Symposium</btitle><stitle>IGARSS</stitle><date>2012-07</date><risdate>2012</risdate><spage>4403</spage><epage>4406</epage><pages>4403-4406</pages><issn>2153-6996</issn><eissn>2153-7003</eissn><isbn>9781467311601</isbn><isbn>146731160X</isbn><eisbn>9781467311588</eisbn><eisbn>1467311588</eisbn><eisbn>9781467311595</eisbn><eisbn>1467311596</eisbn><abstract>The design of multitarget tracking procedures includes, as the most time consuming steps, the definition of the objective class and the formulation of the detection criteria. In this paper we investigate a solution toward an intuitive way for implementing a detector for any ad-hoc application. We capitalize on the OSPA metric to discriminate between the semantic object class of interest and other look-alike classes starting from a short number of unlabeled markers. We propose an illustrative algorithm with a toy example, then we apply it to two real images, the first acquired by SEVIRI, the second by MERIS. In the first case we discriminate between lakes, sea and look-alike clouds, in the other between ground and sea ice. We show how semantic classes with very similar spectral properties can be separated even in the presence of uncertainties or errors in the ground truth.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.2012.6350397</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-6996
ispartof 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012, p.4403-4406
issn 2153-6996
2153-7003
language eng
recordid cdi_ieee_primary_6350397
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification
Clouds
Detectors
Lakes
Measurement
Multi-Object Detection
OSPA metric
Radar tracking
Sea ice
Search problems
Tracking
title Finding an OSPA based object detector by aweakly supervised technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T02%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Finding%20an%20OSPA%20based%20object%20detector%20by%20aweakly%20supervised%20technique&rft.btitle=2012%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium&rft.au=Addesso,%20P.&rft.date=2012-07&rft.spage=4403&rft.epage=4406&rft.pages=4403-4406&rft.issn=2153-6996&rft.eissn=2153-7003&rft.isbn=9781467311601&rft.isbn_list=146731160X&rft_id=info:doi/10.1109/IGARSS.2012.6350397&rft_dat=%3Cieee_6IE%3E6350397%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311588&rft.eisbn_list=1467311588&rft.eisbn_list=9781467311595&rft.eisbn_list=1467311596&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6350397&rfr_iscdi=true