Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso

The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Myhre, J. N., Jenssen, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Myhre, J. N.
Jenssen, R.
description The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art.
doi_str_mv 10.1109/MLSP.2012.6349814
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6349814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6349814</ieee_id><sourcerecordid>6349814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6b0289d74c8b4d17b75733a59d31f32de43a7689663a4f786a00c59125c402dc3</originalsourceid><addsrcrecordid>eNo1UMlOwzAUNJtEKf0AxMU_kOLn3UdUsUmpQAIkbpWbvLQuqVPFCdC_JwiYwywaaQ5DyAWwKQBzV_P8-WnKGfCpFtJZkAdk4syg2ghgXLNDMuLC2Mxx-3ZEzv4LaY7JCJSCjCsJp2SS0oYNsOCkhhHZzMNX17dIPzGs1h0Nsap7jAXSJtJ3bCPWFGPXNrs9LZrtrolDoj76ep9CGkxJE25Dlvodth8hYUlr9G0McUX79MPdGmnuU2rOyUnl64STPx2T19ubl9l9lj_ePcyu8yyAUV2ml4xbVxpZ2KUswSyNMkJ45UoBleAlSuGNtk5r4WVlrPaMFcoBV4VkvCzEmFz-7gZEXOzasPXtfvF3m_gGHbld9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myhre, J. N. ; Jenssen, R.</creator><creatorcontrib>Myhre, J. N. ; Jenssen, R.</creatorcontrib><description>The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1467310247</identifier><identifier>ISBN: 9781467310246</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781467310260</identifier><identifier>EISBN: 1467310263</identifier><identifier>EISBN: 9781467310253</identifier><identifier>EISBN: 1467310255</identifier><identifier>DOI: 10.1109/MLSP.2012.6349814</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cluster assumption ; Clustering algorithms ; Convolution ; Data spectroscopy ; Eigenvalues and eigenfunctions ; Entropy ; Heart ; Kernel ; Kernel entropy component analysis ; Lasso ; Mixture densities ; Semi-supervised learning ; Spectral dimensionality reduction ; Vectors</subject><ispartof>2012 IEEE International Workshop on Machine Learning for Signal Processing, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6349814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6349814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myhre, J. N.</creatorcontrib><creatorcontrib>Jenssen, R.</creatorcontrib><title>Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso</title><title>2012 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art.</description><subject>Cluster assumption</subject><subject>Clustering algorithms</subject><subject>Convolution</subject><subject>Data spectroscopy</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Entropy</subject><subject>Heart</subject><subject>Kernel</subject><subject>Kernel entropy component analysis</subject><subject>Lasso</subject><subject>Mixture densities</subject><subject>Semi-supervised learning</subject><subject>Spectral dimensionality reduction</subject><subject>Vectors</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1467310247</isbn><isbn>9781467310246</isbn><isbn>9781467310260</isbn><isbn>1467310263</isbn><isbn>9781467310253</isbn><isbn>1467310255</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAUNJtEKf0AxMU_kOLn3UdUsUmpQAIkbpWbvLQuqVPFCdC_JwiYwywaaQ5DyAWwKQBzV_P8-WnKGfCpFtJZkAdk4syg2ghgXLNDMuLC2Mxx-3ZEzv4LaY7JCJSCjCsJp2SS0oYNsOCkhhHZzMNX17dIPzGs1h0Nsap7jAXSJtJ3bCPWFGPXNrs9LZrtrolDoj76ep9CGkxJE25Dlvodth8hYUlr9G0McUX79MPdGmnuU2rOyUnl64STPx2T19ubl9l9lj_ePcyu8yyAUV2ml4xbVxpZ2KUswSyNMkJ45UoBleAlSuGNtk5r4WVlrPaMFcoBV4VkvCzEmFz-7gZEXOzasPXtfvF3m_gGHbld9g</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Myhre, J. N.</creator><creator>Jenssen, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso</title><author>Myhre, J. N. ; Jenssen, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6b0289d74c8b4d17b75733a59d31f32de43a7689663a4f786a00c59125c402dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cluster assumption</topic><topic>Clustering algorithms</topic><topic>Convolution</topic><topic>Data spectroscopy</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Entropy</topic><topic>Heart</topic><topic>Kernel</topic><topic>Kernel entropy component analysis</topic><topic>Lasso</topic><topic>Mixture densities</topic><topic>Semi-supervised learning</topic><topic>Spectral dimensionality reduction</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Myhre, J. N.</creatorcontrib><creatorcontrib>Jenssen, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myhre, J. N.</au><au>Jenssen, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso</atitle><btitle>2012 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1467310247</isbn><isbn>9781467310246</isbn><eisbn>9781467310260</eisbn><eisbn>1467310263</eisbn><eisbn>9781467310253</eisbn><eisbn>1467310255</eisbn><abstract>The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2012.6349814</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2012 IEEE International Workshop on Machine Learning for Signal Processing, 2012, p.1-6
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_6349814
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cluster assumption
Clustering algorithms
Convolution
Data spectroscopy
Eigenvalues and eigenfunctions
Entropy
Heart
Kernel
Kernel entropy component analysis
Lasso
Mixture densities
Semi-supervised learning
Spectral dimensionality reduction
Vectors
title Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mixture%20weight%20influence%20on%20kernel%20entropy%20component%20analysis%20and%20semi-supervised%20learning%20using%20the%20Lasso&rft.btitle=2012%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Myhre,%20J.%20N.&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1467310247&rft.isbn_list=9781467310246&rft_id=info:doi/10.1109/MLSP.2012.6349814&rft_dat=%3Cieee_6IE%3E6349814%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310260&rft.eisbn_list=1467310263&rft.eisbn_list=9781467310253&rft.eisbn_list=1467310255&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6349814&rfr_iscdi=true