Local distance metric learning for efficient conformal predictors
Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Pekala, Michael J. Llorens, Ashley J. I-Jeng Wang |
description | Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets. |
doi_str_mv | 10.1109/MLSP.2012.6349813 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6349813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6349813</ieee_id><sourcerecordid>6349813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-75bf872cd59021921e5361c5a6514aea83a419833120e7556008134333417ecb3</originalsourceid><addsrcrecordid>eNo1UMlKxEAUbDcwjvkA8ZIfSOzXr9fjMLhBREEFb0NP50VasgydXPx7I451KaiiiqIYuwJeAXB381S_vlSCg6g0SmcBj1jujAWpDQIXmh-zTKCxpRP244Rd_BvSnLIMlIJSKAnnLJ-mL77AgpMaMraux-C7oonT7IdARU9ziqHoyKchDp9FO6aC2jaGSMNchHFYhH4J7BM1Mcxjmi7ZWeu7ifIDr9j73e3b5qGsn-8fN-u6jGDUXBq1a60RoVGOC3ACSKGGoLxWID15i16Cs4ggOBml9O9GlIgowVDY4Ypd__VGItruU-x9-t4e3sAfYV1NSg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Local distance metric learning for efficient conformal predictors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pekala, Michael J. ; Llorens, Ashley J. ; I-Jeng Wang</creator><creatorcontrib>Pekala, Michael J. ; Llorens, Ashley J. ; I-Jeng Wang</creatorcontrib><description>Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1467310247</identifier><identifier>ISBN: 9781467310246</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781467310260</identifier><identifier>EISBN: 1467310263</identifier><identifier>EISBN: 9781467310253</identifier><identifier>EISBN: 1467310255</identifier><identifier>DOI: 10.1109/MLSP.2012.6349813</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; classification ; conformal prediction ; distance metric learning ; Error analysis ; Machine learning ; Measurement ; Optimization ; Support vector machines</subject><ispartof>2012 IEEE International Workshop on Machine Learning for Signal Processing, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6349813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6349813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pekala, Michael J.</creatorcontrib><creatorcontrib>Llorens, Ashley J.</creatorcontrib><creatorcontrib>I-Jeng Wang</creatorcontrib><title>Local distance metric learning for efficient conformal predictors</title><title>2012 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.</description><subject>Approximation methods</subject><subject>classification</subject><subject>conformal prediction</subject><subject>distance metric learning</subject><subject>Error analysis</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Optimization</subject><subject>Support vector machines</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1467310247</isbn><isbn>9781467310246</isbn><isbn>9781467310260</isbn><isbn>1467310263</isbn><isbn>9781467310253</isbn><isbn>1467310255</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlKxEAUbDcwjvkA8ZIfSOzXr9fjMLhBREEFb0NP50VasgydXPx7I451KaiiiqIYuwJeAXB381S_vlSCg6g0SmcBj1jujAWpDQIXmh-zTKCxpRP244Rd_BvSnLIMlIJSKAnnLJ-mL77AgpMaMraux-C7oonT7IdARU9ziqHoyKchDp9FO6aC2jaGSMNchHFYhH4J7BM1Mcxjmi7ZWeu7ifIDr9j73e3b5qGsn-8fN-u6jGDUXBq1a60RoVGOC3ACSKGGoLxWID15i16Cs4ggOBml9O9GlIgowVDY4Ypd__VGItruU-x9-t4e3sAfYV1NSg</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Pekala, Michael J.</creator><creator>Llorens, Ashley J.</creator><creator>I-Jeng Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Local distance metric learning for efficient conformal predictors</title><author>Pekala, Michael J. ; Llorens, Ashley J. ; I-Jeng Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-75bf872cd59021921e5361c5a6514aea83a419833120e7556008134333417ecb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>classification</topic><topic>conformal prediction</topic><topic>distance metric learning</topic><topic>Error analysis</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Optimization</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Pekala, Michael J.</creatorcontrib><creatorcontrib>Llorens, Ashley J.</creatorcontrib><creatorcontrib>I-Jeng Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pekala, Michael J.</au><au>Llorens, Ashley J.</au><au>I-Jeng Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Local distance metric learning for efficient conformal predictors</atitle><btitle>2012 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1467310247</isbn><isbn>9781467310246</isbn><eisbn>9781467310260</eisbn><eisbn>1467310263</eisbn><eisbn>9781467310253</eisbn><eisbn>1467310255</eisbn><abstract>Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2012.6349813</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2012 IEEE International Workshop on Machine Learning for Signal Processing, 2012, p.1-6 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_6349813 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods classification conformal prediction distance metric learning Error analysis Machine learning Measurement Optimization Support vector machines |
title | Local distance metric learning for efficient conformal predictors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Local%20distance%20metric%20learning%20for%20efficient%20conformal%20predictors&rft.btitle=2012%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Pekala,%20Michael%20J.&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1467310247&rft.isbn_list=9781467310246&rft_id=info:doi/10.1109/MLSP.2012.6349813&rft_dat=%3Cieee_6IE%3E6349813%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310260&rft.eisbn_list=1467310263&rft.eisbn_list=9781467310253&rft.eisbn_list=1467310255&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6349813&rfr_iscdi=true |