Local distance metric learning for efficient conformal predictors

Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pekala, Michael J., Llorens, Ashley J., I-Jeng Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Pekala, Michael J.
Llorens, Ashley J.
I-Jeng Wang
description Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.
doi_str_mv 10.1109/MLSP.2012.6349813
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6349813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6349813</ieee_id><sourcerecordid>6349813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-75bf872cd59021921e5361c5a6514aea83a419833120e7556008134333417ecb3</originalsourceid><addsrcrecordid>eNo1UMlKxEAUbDcwjvkA8ZIfSOzXr9fjMLhBREEFb0NP50VasgydXPx7I451KaiiiqIYuwJeAXB381S_vlSCg6g0SmcBj1jujAWpDQIXmh-zTKCxpRP244Rd_BvSnLIMlIJSKAnnLJ-mL77AgpMaMraux-C7oonT7IdARU9ziqHoyKchDp9FO6aC2jaGSMNchHFYhH4J7BM1Mcxjmi7ZWeu7ifIDr9j73e3b5qGsn-8fN-u6jGDUXBq1a60RoVGOC3ACSKGGoLxWID15i16Cs4ggOBml9O9GlIgowVDY4Ypd__VGItruU-x9-t4e3sAfYV1NSg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Local distance metric learning for efficient conformal predictors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pekala, Michael J. ; Llorens, Ashley J. ; I-Jeng Wang</creator><creatorcontrib>Pekala, Michael J. ; Llorens, Ashley J. ; I-Jeng Wang</creatorcontrib><description>Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1467310247</identifier><identifier>ISBN: 9781467310246</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781467310260</identifier><identifier>EISBN: 1467310263</identifier><identifier>EISBN: 9781467310253</identifier><identifier>EISBN: 1467310255</identifier><identifier>DOI: 10.1109/MLSP.2012.6349813</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; classification ; conformal prediction ; distance metric learning ; Error analysis ; Machine learning ; Measurement ; Optimization ; Support vector machines</subject><ispartof>2012 IEEE International Workshop on Machine Learning for Signal Processing, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6349813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6349813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pekala, Michael J.</creatorcontrib><creatorcontrib>Llorens, Ashley J.</creatorcontrib><creatorcontrib>I-Jeng Wang</creatorcontrib><title>Local distance metric learning for efficient conformal predictors</title><title>2012 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.</description><subject>Approximation methods</subject><subject>classification</subject><subject>conformal prediction</subject><subject>distance metric learning</subject><subject>Error analysis</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Optimization</subject><subject>Support vector machines</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1467310247</isbn><isbn>9781467310246</isbn><isbn>9781467310260</isbn><isbn>1467310263</isbn><isbn>9781467310253</isbn><isbn>1467310255</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlKxEAUbDcwjvkA8ZIfSOzXr9fjMLhBREEFb0NP50VasgydXPx7I451KaiiiqIYuwJeAXB381S_vlSCg6g0SmcBj1jujAWpDQIXmh-zTKCxpRP244Rd_BvSnLIMlIJSKAnnLJ-mL77AgpMaMraux-C7oonT7IdARU9ziqHoyKchDp9FO6aC2jaGSMNchHFYhH4J7BM1Mcxjmi7ZWeu7ifIDr9j73e3b5qGsn-8fN-u6jGDUXBq1a60RoVGOC3ACSKGGoLxWID15i16Cs4ggOBml9O9GlIgowVDY4Ypd__VGItruU-x9-t4e3sAfYV1NSg</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Pekala, Michael J.</creator><creator>Llorens, Ashley J.</creator><creator>I-Jeng Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201209</creationdate><title>Local distance metric learning for efficient conformal predictors</title><author>Pekala, Michael J. ; Llorens, Ashley J. ; I-Jeng Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-75bf872cd59021921e5361c5a6514aea83a419833120e7556008134333417ecb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>classification</topic><topic>conformal prediction</topic><topic>distance metric learning</topic><topic>Error analysis</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Optimization</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Pekala, Michael J.</creatorcontrib><creatorcontrib>Llorens, Ashley J.</creatorcontrib><creatorcontrib>I-Jeng Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pekala, Michael J.</au><au>Llorens, Ashley J.</au><au>I-Jeng Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Local distance metric learning for efficient conformal predictors</atitle><btitle>2012 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2012-09</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1467310247</isbn><isbn>9781467310246</isbn><eisbn>9781467310260</eisbn><eisbn>1467310263</eisbn><eisbn>9781467310253</eisbn><eisbn>1467310255</eisbn><abstract>Conformal prediction is a relatively recent approach to classification that offers a theoretical framework for generating predictions with precise levels of confidence. For each new object encountered, a conformal predictor outputs a set of class labels that contains the true label with probability at least 1 - ∈, where ∈ is a user-specified error rate. The ability to predict with confidence can be extremely useful, but in many real-world applications unambiguous predictions consisting of a single class label are preferred. Hence it is desirable to design conformal predictors to maximize the rate of singleton predictions, termed the efficiency of the predictor. In this paper we derive a novel criterion for maximizing efficiency for a certain class of conformal predictors, show how concepts from local distance metric learning can provide a useful bound for maximizing this criterion, and demonstrate efficiency gains on real-world datasets.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2012.6349813</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2012 IEEE International Workshop on Machine Learning for Signal Processing, 2012, p.1-6
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_6349813
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
classification
conformal prediction
distance metric learning
Error analysis
Machine learning
Measurement
Optimization
Support vector machines
title Local distance metric learning for efficient conformal predictors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Local%20distance%20metric%20learning%20for%20efficient%20conformal%20predictors&rft.btitle=2012%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Pekala,%20Michael%20J.&rft.date=2012-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1467310247&rft.isbn_list=9781467310246&rft_id=info:doi/10.1109/MLSP.2012.6349813&rft_dat=%3Cieee_6IE%3E6349813%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467310260&rft.eisbn_list=1467310263&rft.eisbn_list=9781467310253&rft.eisbn_list=1467310255&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6349813&rfr_iscdi=true